Comparative Proteomic Analysis of Extracellular Vesicles from Donkey Colostrum and Mature Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Donkey Milk Sampling
2.2. Isolation of EVs from Mature Milk and Colostrum
2.3. Characterization of EVs
2.3.1. Scanning Electron Microscopy
2.3.2. Nanotracking Analysis
2.3.3. Immunoblotting
2.4. Proteomics
2.4.1. Protein Extraction, Digestion, Labeling, and Mass Spectrometric Analysis
2.4.2. Bioinformatic Analysis
2.4.3. Functional Annotation
3. Results
3.1. Characterization of EVs from DC and MDM
3.2. Proteomic Analysis of EVs from DC and MDM
3.3. Comprensive Description of Protein Cargo of EVs from DC and MDM
3.4. Differential Protein Cargo of EVs from DC and MDM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | Donkey Milk |
EVs | Extracellular Vesicles |
MDM | Mature Donkey Milk |
DC | Donkey Colostrum |
MFGM | Milk Fatty Globule Membrane |
SEM | Scanning Electron Microscopy |
TMT | Tandem Mass Tags |
NTA | Nanotracking Analysis |
FDR | False Discovery Rate |
PCA | Principal Component Analysis |
DRPs | Differentially Represented Proteins |
TMHMM | TransMembrane Hidden Markov Model |
GO | Gene Ontology |
BP | Biological Process |
CC | Cellular Component |
MFs | Molecular Functions |
α-LA | Alpha-Lactalbumin |
FABP3 | Fatty Acid Binding Protein 3 |
MBL | Mannose-Binding Protein |
LPL | Lipoprotein Lipase |
Lyz | Lysozyme C |
References
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Gallina, S.; Di Francesco, A.; Foti, S. Proteins and Bioactive Peptides from Donkey Milk: The Molecular Basis for Its Reduced Allergenic Properties. Food Res. Int. 2017, 99, 41–57. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S. Use of Donkey Milk in Children with Cow’s Milk Protein Allergy. Foods 2013, 2, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Vashisht, P.; Singh, L.; Awasti, N.; Sharma, S.; Mohan, C.; Singh, T.P.; Sharma, S.; Shyam, S.; Charles, A.P.R. Donkey Milk as a Non-Bovine Alternative: A Review of Its Nutri-Functional Properties, Applications, and Challenges. J. Food Sci. Technol. 2024, 61, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Živkov Baloš, M.; Ljubojević Pelić, D.; Jakšić, S.; Lazić, S. Donkey Milk: An Overview of Its Chemical Composition and Main Nutritional Properties or Human Health Benefit Properties. J. Equine Vet. Sci. 2023, 121, 104225. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Cao, X.; Han, H.; Kong, F.; Yue, X. Comparative Analysis of Whey Proteins in Donkey Colostrum and Mature Milk Using Quantitative Proteomics. Food Res. Int. 2020, 127, 108741. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Cao, X.; Yang, M.; Han, H.; Kong, F.; Yue, X. Quantitative Proteomic Analysis of Milk Fat Globule Membrane (MFGM) Proteins from Donkey Colostrum and Mature Milk. Food Funct. 2019, 10, 4256–4268. [Google Scholar] [CrossRef]
- Proikakis, S.C.; Bouroutzika, E.V.; Anagnostopoulos, A.K.; Th Tsangaris, G. Proteomic Data of Donkey’s Milk. Data Br. 2021, 39, 107507. [Google Scholar] [CrossRef]
- Ning, J.; Chen, J.; Zhu, Q.; Shi, M.; Chen, J.; Liu, X.; Luo, X.; Yue, X. Peptidome Profiling of Human, Bovine, and Donkey Colostrum through Label-Free Quantitative Analysis Reveals Proteolysis of Milk Proteins. Food Funct. 2024, 15, 7161–7173. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, G.; Ji, C.; Fan, Z.; Ge, S.; Li, H.; Wang, Y.; Lv, X.; Zhao, F. Comparative Whey Proteome Profiling of Donkey Milk With Human and Cow Milk. Front. Nutr. 2022, 9, 911454. [Google Scholar] [CrossRef] [PubMed]
- Derdak, R.; Sakoui, S.; Pop, O.L.; Muresan, C.I.; Vodnar, D.C.; Addoum, B.; Vulturar, R.; Chis, A.; Suharoschi, R.; Soukri, A.; et al. Insights on Health and Food Applications of Equus Asinus (Donkey) Milk Bioactive Proteins and Peptides-An Overview. Foods 2020, 9, 1302. [Google Scholar] [CrossRef]
- Kocic, H.; Langerholc, T.; Kostic, M.; Stojanovic, S.; Najman, S.; Krstic, M.; Nesic, I.; Godic, A.; Wollina, U. The Regenerative Potential of Donkey and Human Milk on the Redox-Sensitive and Proliferative Signaling Pathways of Skin Fibroblasts. Oxid. Med. Cell. Longev. 2020, 2020, 5618127. [Google Scholar] [CrossRef]
- Buratta, S.; Urbanelli, L.; Tognoloni, A.; Latella, R.; Cerrotti, G.; Emiliani, C.; Chiaradia, E. Protein and Lipid Content of Milk Extracellular Vesicles: A Comparative Overview. Life 2023, 13, 401. [Google Scholar] [CrossRef]
- Sanwlani, R.; Fonseka, P.; Chitti, S.V.; Mathivanan, S. Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery. Proteomes 2020, 8, 11. [Google Scholar] [CrossRef]
- Castaño, C.; Novials, A.; Párrizas, M. An Overview of Inter-Tissue and Inter-Kingdom Communication Mediated by Extracellular Vesicles in the Regulation of Mammalian Metabolism. Int. J. Mol. Sci. 2023, 24, 2071. [Google Scholar] [CrossRef]
- Ragni, E. Extracellular Vesicles: Recent Advances and Perspectives. Front. Biosci. 2025, 30, 36405. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Mecocci, S.; De Ciucis, C.G.; Mura, L.; Dell’Anno, F.; Zinellu, S.; Fruscione, F.; De Paolis, L.; Carta, T.; Anfossi, A.G.; et al. Goat Milk Extracellular Vesicles: Immuno-Modulation Effects on Porcine Monocyte-Derived Macrophages in Vitro. Front. Immunol. 2023, 14, 1209898. [Google Scholar] [CrossRef]
- Jiang, X.; You, L.; Zhang, Z.; Cui, X.; Zhong, H. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Front. Cell Dev. Biol. 2021, 9, 693534. [Google Scholar] [CrossRef]
- Lokossou, G.A.G.; Kouakanou, L.; Schumacher, A.; Zenclussen, A.C. Human Breast Milk: From Food to Active Immune Response with Disease Protection in Infants and Mothers. Front. Immunol. 2022, 13, 849012. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, M.; Bijari, S.; Khazaei, A.H.; Shojaei-Ghahrizjani, F.; Rezakhani, L. The Role of Milk-Derived Exosomes in the Treatment of Diseases. Front. Genet. 2022, 13, 1009338. [Google Scholar] [CrossRef]
- Salehi, M.; Negahdari, B.; Mehryab, F.; Shekari, F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. J. Agric. Food Chem. 2024, 72, 8304–8331. [Google Scholar] [CrossRef] [PubMed]
- Chutipongtanate, S.; Morrow, A.L.; Newburg, D.S. Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022, 11, 2345. [Google Scholar] [CrossRef]
- Hu, Y.; Thaler, J.; Nieuwland, R. Extracellular Vesicles in Human Milk. Pharmaceuticals 2021, 14, 1050. [Google Scholar] [CrossRef]
- Prasadani, M.; Kodithuwakku, S.; Pennarossa, G.; Fazeli, A.; Brevini, T.A.L. Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles. Int. J. Mol. Sci. 2024, 25, 5543. [Google Scholar] [CrossRef]
- Wedekind, S.I.S.; Shenker, N.S. Antiviral Properties of Human Milk. Microorganisms 2021, 9, 715. [Google Scholar] [CrossRef]
- Lorite, P.; Domínguez, J.N.; Palomeque, T.; Torres, M.I. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int. J. Mol. Sci. 2025, 26, 189. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.; Mishra, V.S.N.; Santoro, J.; Mukhopadhya, A.; Buckley, F.; O’Driscoll, L.; Giblin, L.; Brodkorb, A. Effect of In Vitro Enzyme Digestion and Bile Treatment on Milk Extracellular Vesicles Stability. Mol. Nutr. Food Res. 2024, 68, e2300620. [Google Scholar] [CrossRef] [PubMed]
- López de Las Hazas, M.C.; Del Pozo-Acebo, L.; Hansen, M.S.; Gil-Zamorano, J.; Mantilla-Escalante, D.C.; Gómez-Coronado, D.; Marín, F.; Garcia-Ruiz, A.; Rasmussen, J.T.; Dávalos, A. Dietary Bovine Milk MiRNAs Transported in Extracellular Vesicles Are Partially Stable during GI Digestion, Are Bioavailable and Reach Target Tissues but Need a Minimum Dose to Impact on Gene Expression. Eur. J. Nutr. 2022, 61, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Khanam, A.; Ngu, A.; Zempleni, J. Bioavailability of Orally Administered Small Extracellular Vesicles from Bovine Milk in C57BL/6J Mice. Int. J. Pharm. 2023, 639, 122974. [Google Scholar] [CrossRef]
- Kusuma, R.J.; Manca, S.; Frieme, T.; Sukreet, S.; Nguyen, C.; Zempleni, J. Human Vascular Endothelial Cells Transport Foreign Exosomes from Cow’s Milk by Endocytosis. Am. J. Physiol. Cell Physiol. 2016, 310, C800–C807. [Google Scholar] [CrossRef]
- Ross, M.; Atalla, H.; Karrow, N.; Mallard, B.A. The Bioactivity of Colostrum and Milk Exosomes of High, Average, and Low Immune Responder Cows on Human Intestinal Epithelial Cells. J. Dairy Sci. 2021, 104, 2499–2510. [Google Scholar] [CrossRef]
- Özdemir, S. Identification and Comparison of Exosomal MicroRNAs in the Milk and Colostrum of Two Different Cow Breeds. Gene 2020, 743, 144609. [Google Scholar] [CrossRef]
- Buratta, S.; Urbanelli, L.; Sagini, K.; Giovagnoli, S.; Caponi, S.; Fioretto, D.; Mitro, N.; Caruso, D.; Emiliani, C. Extracellular Vesicles Released by Fibroblasts Undergoing H-Ras Induced Senescence Show Changes in Lipid Profile. PLoS ONE 2017, 12, e0188840. [Google Scholar] [CrossRef] [PubMed]
- Buratta, S.; Shimanaka, Y.; Costanzi, E.; Ni, S.; Urbanelli, L.; Kono, N.; Morena, F.; Sagini, K.; Giovagnoli, S.; Romani, R.; et al. Lipotoxic Stress Alters the Membrane Lipid Profile of Extracellular Vesicles Released by Huh-7 Hepatocarcinoma Cells. Sci. Rep. 2021, 11, 4613. [Google Scholar] [CrossRef]
- Buratta, S.; Latella, R.; Chiaradia, E.; Salzano, A.M.; Tancini, B.; Pellegrino, R.M.; Urbanelli, L.; Cerrotti, G.; Calzoni, E.; Alabed, H.B.R.; et al. Characterization of Nanovesicles Isolated from Olive Vegetation Water. Foods 2024, 13, 835. [Google Scholar] [CrossRef]
- Mauceri, A.; Puccio, G.; Faddetta, T.; Abbate, L.; Polito, G.; Caldiero, C.; Renzone, G.; Lo Pinto, M.; Alibrandi, P.; Vaccaro, E.; et al. Integrated Omics Approach Reveals the Molecular Pathways Activated in Tomato by Kocuria Rhizophila, a Soil Plant Growth-Promoting Bacterium. Plant Physiol. Biochem. 2024, 210, 108609. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape Plug-in to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]
- Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape Plugin: Pathway Insights Using Integrated Experimental and in Silico Data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef]
- Morozumi, M.; Izumi, H.; Shimizu, T.; Takeda, Y. Comparison of Isolation Methods Using Commercially Available Kits for Obtaining Extracellular Vesicles from Cow Milk. J. Dairy Sci. 2021, 104, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Grossen, P.; Portmann, M.; Koller, E.; Duschmalé, M.; Minz, T.; Sewing, S.; Pandya, N.J.; van Geijtenbeek, S.K.; Ducret, A.; Kusznir, E.A.; et al. Evaluation of Bovine Milk Extracellular Vesicles for the Delivery of Locked Nucleic Acid Antisense Oligonucleotides. Eur. J. Pharm. Biopharm. 2021, 158, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, S.; De Paolis, L.; Zoccola, R.; Fruscione, F.; De Ciucis, C.G.; Chiaradia, E.; Moccia, V.; Tognoloni, A.; Pascucci, L.; Zoppi, S.; et al. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022, 10, 3264. [Google Scholar] [CrossRef]
- Vaswani, K.M.; Peiris, H.; Qin Koh, Y.; Hill, R.J.; Harb, T.; Arachchige, B.J.; Logan, J.; Reed, S.; Davies, P.S.W.; Mitchell, M.D. A Complete Proteomic Profile of Human and Bovine Milk Exosomes by Liquid Chromatography Mass Spectrometry. Expert Rev. Proteomics 2021, 18, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Bhat, A.H.; Giri, K.; Ambatipudi, K. BoMiProt: A Database of Bovine Milk Proteins. J. Proteom. 2020, 215, 103648. [Google Scholar] [CrossRef]
- Arena, S.; Renzone, G.; Novi, G.; Scaloni, A. Redox Proteomics of Fat Globules Unveils Broad Protein Lactosylation and Compositional Changes in Milk Samples Subjected to Various Technological Procedures. J. Proteom. 2011, 74, 2453–2475. [Google Scholar] [CrossRef]
- Samuel, M.; Sanwlani, R.; Pathan, M.; Anand, S.; Johnston, E.L.; Ang, C.S.; Kaparakis-Liaskos, M.; Mathivanan, S. Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles. Cells 2023, 12, 2491. [Google Scholar] [CrossRef]
- Delosière, M.; Pires, J.; Bernard, L.; Cassar-Malek, I.; Bonnet, M. Milk Proteome from in Silico Data Aggregation Allows the Identification of Putative Biomarkers of Negative Energy Balance in Dairy Cows. Sci. Rep. 2019, 9, 9718. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.F.; Blees, T.; Shakeri, F.; Buness, A.; Sylvester, M.; Savoini, G.; Agazzi, A.; Mrljak, V.; Sauerwein, H. Comparative Proteome Profiling in Exosomes Derived from Porcine Colostrum versus Mature Milk Reveals Distinct Functional Proteomes. J. Proteomics 2021, 249, 104338. [Google Scholar] [CrossRef]
- Yang, M.; Song, D.; Cao, X.; Wu, R.; Liu, B.; Ye, W.; Wu, J.; Yue, X. Comparative Proteomic Analysis of Milk-Derived Exosomes in Human and Bovine Colostrum and Mature Milk Samples by ITRAQ-Coupled LC-MS/MS. Food Res. Int. 2017, 92, 17–25. [Google Scholar] [CrossRef]
- Samuel, M.; Chisanga, D.; Liem, M.; Keerthikumar, S.; Anand, S.; Ang, C.-S.; Adda, C.G.; Versteegen, E.; Jois, M.; Mathivanan, S. Bovine Milk-Derived Exosomes from Colostrum Are Enriched with Proteins Implicated in Immune Response and Growth. Sci. Rep. 2017, 7, 5933. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals 2021, 11, 2506. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Sacco, R.E.; Nonnecke, B.J.; Lippolis, J.D. Bovine Milk Proteome: Quantitative Changes in Normal Milk Exosomes, Milk Fat Globule Membranes and Whey Proteomes Resulting from Staphylococcus Aureus Mastitis. J. Proteomics 2013, 82, 141–154. [Google Scholar] [CrossRef]
- Larios, J.; Mercier, V.; Roux, A.; Gruenberg, J. ALIX- and ESCRT-III-Dependent Sorting of Tetraspanins to Exosomes. J. Cell Biol. 2020, 219, e201904113. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of Raw or Heated Milk from Different Species: An Evaluation of the Nutritional and Potential Health Benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Cedzynski, M.; Swierzko, A.S.; Kilpatrick, D.C. Factors of the Lectin Pathway of Complement Activation and Their Clinical Associations in Neonates. J. Biomed. Biotechnol. 2012, 2012, 363246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brian, B.F.; Freedman, T.S. The Src-Family Kinase Lyn in Immunoreceptor Signaling. Endocrinology 2021, 162, bqab152. [Google Scholar] [CrossRef]
- Roberts, M.E.; Bishop, J.L.; Fan, X.; Beer, J.L.; Kum, W.W.S.; Krebs, D.L.; Huang, M.; Gill, N.; Priatel, J.J.; Finlay, B.B.; et al. Lyn Deficiency Leads to Increased Microbiota-Dependent Intestinal Inflammation and Susceptibility to Enteric Pathogens. J. Immunol. 2014, 193, 5249–5263. [Google Scholar] [CrossRef]
- Mishra, P.; Ch, S.; Ghosh, A.; Kundu, S.; Agarwal, R.; Bhogapurapu, B.; Biswas, S.; Roy, S. S100A12 Inhibits Streptococcus Pneumoniae and Aids in Wound Healing of Corneal Epithelial Cells Both in Vitro and in Vivo. Microbes Infect. 2024, 27, 105421. [Google Scholar] [CrossRef]
- Maji, S.; Yan, I.K.; Parasramka, M.; Mohankumar, S.; Matsuda, A.; Patel, T. In Vitro Toxicology Studies of Extracellular Vesicles. J. Appl. Toxicol. 2017, 37, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Khizroeva, J.; Makatsariya, A.; Vorobev, A.; Bitsadze, V.; Elalamy, I.; Lazarchuk, A.; Salnikova, P.; Einullaeva, S.; Solopova, A.; Tretykova, M.; et al. The Hemostatic System in Newborns and the Risk of Neonatal Thrombosis. Int. J. Mol. Sci. 2023, 24, 13864. [Google Scholar] [CrossRef]
- Berckmans, R.J.; Lacroix, R.; Hau, C.M.; Sturk, A.; Nieuwland, R. Extracellular Vesicles and Coagulation in Blood from Healthy Humans Revisited. J. Extracell. Vesicles 2019, 8, 1688936. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hell, L.; Kendlbacher, R.A.; Hajji, N.; Hau, C.; van Dam, A.; Berckmans, R.J.; Wisgrill, L.; Ay, C.; Pabinger, I.; et al. Human Milk Triggers Coagulation via Tissue Factor-Exposing Extracellular Vesicles. Blood Adv. 2020, 4, 6274–6282. [Google Scholar] [CrossRef]
- Truman-Rosentsvit, M.; Berenbaum, D.; Spektor, L.; Cohen, L.A.; Belizowsky-Moshe, S.; Lifshitz, L.; Ma, J.; Li, W.; Kesselman, E.; Abutbul-Ionita, I.; et al. Ferritin Is Secreted via 2 Distinct Nonclassical Vesicular Pathways. Blood 2018, 131, 342–352. [Google Scholar] [CrossRef]
- Yanatori, I.; Richardson, D.R.; Dhekne, H.S.; Toyokuni, S.; Kishi, F. CD63 Is Regulated by Iron via the IRE-IRP System and Is Important for Ferritin Secretion by Extracellular Vesicles. Blood 2021, 138, 1490–1503. [Google Scholar] [CrossRef] [PubMed]
- Palsa, K.; Connor, J.R.; Flanagan, J.; Hines, E.A. H-Ferritin in Sows’ Colostrum- and Milk-Derived Extracellular Vesicles: A Novel Iron Delivery Concept. J. Anim. Sci. 2023, 101, skad013. [Google Scholar] [CrossRef] [PubMed]
- Ochkasova, A.; Arbuzov, G.; Malygin, A.; Graifer, D. Two “Edges” in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int. J. Mol. Sci. 2023, 24, 11458. [Google Scholar] [CrossRef]
- Ohta, M.; Koshida, S.; Jimbo, I.; Oda, M.; Inoue, R.; Tsukahara, T.; Terahara, M.; Nakamura, Y.; Maruo, Y. Highest Concentration of Breast-Milk-Derived Exosomes in Colostrum. Pediatr. Int. 2022, 64, e15346. [Google Scholar] [CrossRef] [PubMed]
- Benmoussa, A.; Gotti, C.; Bourassa, S.; Gilbert, C.; Provost, P. Identification of Protein Markers for Extracellular Vesicle (EV) Subsets in Cow’s Milk. J. Proteom. 2018, 192, 78–88. [Google Scholar] [CrossRef]
- Van Herwijnen, M.J.C.; Zonneveld, M.I.; Goerdayal, S.; Hoen, E.N.M.N.; Garssen, J.; Stahl, B.; Maarten Altelaar, A.F.; Redegeld, F.A.; Wauben, M.H.M. Comprehensive Proteomic Analysis of Human Milk-Derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Mol. Cell. Proteom. 2016, 15, 3412–3423. [Google Scholar] [CrossRef]
- Quan, S.; Nan, X.; Wang, K.; Jiang, L.; Yao, J.; Xiong, B. Characterization of Sheep Milk Extracellular Vesicle-MiRNA by Sequencing and Comparison with Cow Milk. Animals 2020, 10, 331. [Google Scholar] [CrossRef]
- Bui, H.T.D.; You, G.; Lee, M.; Mao, W.; So, C.; Byeon, C.; Hong, S.; Mok, H.; Yoo, H.S. Milk Exosome-Infused Fibrous Matrix for Treatment of Acute Wound. J. Control. Release 2024, 376, 79–93. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Almeida, A.M.; Ventosa, M.; Coelho, A.V.; Castro, N.; Argüello, A. The Effect of Colostrum Intake on Blood Plasma Proteome Profile in Newborn Lambs: Low Abundance Proteins. BMC Vet. Res. 2014, 10, 85. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Ding, H.; Zhao, H. Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. Biology 2024, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, T.A.; Lippolis, J.D. Developmental Changes in the Milk Fat Globule Membrane Proteome during the Transition from Colostrum to Milk. J. Dairy Sci. 2008, 91, 2307–2318. [Google Scholar] [CrossRef]
- Atehortua, L.; Davidson, W.S.; Chougnet, C.A. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Yu, S.J.; Huang, G.; Yu, Y.B.; Li, Y.Q. Apolipoprotein A-I: Potential Protection Against Intestinal Injury Induced by Dietary Lipid. J. Inflamm. Res. 2024, 17, 5711–5721. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caira, S.; Buratta, S.; Vincenzetti, S.; Latella, R.; Seccaroni, M.; De Pascale, S.; Federici, C.; Lugini, L.; Giovagnoli, S.; Salzano, A.M.; et al. Comparative Proteomic Analysis of Extracellular Vesicles from Donkey Colostrum and Mature Milk. Metabolites 2025, 15, 619. https://doi.org/10.3390/metabo15090619
Caira S, Buratta S, Vincenzetti S, Latella R, Seccaroni M, De Pascale S, Federici C, Lugini L, Giovagnoli S, Salzano AM, et al. Comparative Proteomic Analysis of Extracellular Vesicles from Donkey Colostrum and Mature Milk. Metabolites. 2025; 15(9):619. https://doi.org/10.3390/metabo15090619
Chicago/Turabian StyleCaira, Simonetta, Sandra Buratta, Silvia Vincenzetti, Raffaella Latella, Matteo Seccaroni, Sabrina De Pascale, Cristina Federici, Luana Lugini, Stefano Giovagnoli, Anna Maria Salzano, and et al. 2025. "Comparative Proteomic Analysis of Extracellular Vesicles from Donkey Colostrum and Mature Milk" Metabolites 15, no. 9: 619. https://doi.org/10.3390/metabo15090619
APA StyleCaira, S., Buratta, S., Vincenzetti, S., Latella, R., Seccaroni, M., De Pascale, S., Federici, C., Lugini, L., Giovagnoli, S., Salzano, A. M., Emiliani, C., Scaloni, A., & Chiaradia, E. (2025). Comparative Proteomic Analysis of Extracellular Vesicles from Donkey Colostrum and Mature Milk. Metabolites, 15(9), 619. https://doi.org/10.3390/metabo15090619