Current Developments in µMAS NMR Analysis for Metabolomics
Abstract
:1. Introduction
The Basic Criteria of µMAS for Metabolomics
- Detection sensitivity: The unequivocal identification and quantification of the metabolites are the critical aspects of metabolomics. In NMR, the adequate signal-to-noise ratio (SNR) is essential; the standardized requirement for the limit of detection (LOD) and quantification (LOQ) are SNR ≥ 3 and 10, respectively [20,21].
- Spectral resolution: Aside from the fact that high spectral resolution improves sensitivity, it also facilitates the unfolding of the dense metabolic NMR signal patterns (e.g., the 3–5 ppm range in a 1H spectrum) and allowing thorough peak analyses (identification and quantification). The acceptable 1H resolution by HR-MAS NMR is about 0.005 ppm (i.e., 2.5 Hz at 11.7 T) [22].
- Spectral repeatability: Metabolic profiling relies predominantly on multivariate and quantification data analysis; thus, the capability of acquiring homogenous data from the same sampling pool is crucial. This depends on the stability of the NMR instrumentation (including the probe) and also the sample preparation.
- Sample preparation: The precision and accuracy in the sample obtainment and sample preparation are of importance to avoid biased interpretation of the metabolic responses; therefore, a clean and reliable sample preparation must be established for all study models.
2. µMAS Approaches to Metabolomics
2.1. µMAS Using A Sample Configuration
2.2. µMAS Using a Spinning µCoil: High-Resolution Magic-Angle Coil Spinning (HR-MACS)
2.3. A Standalone High-Resolution µMAS Probe (HR-µMAS)
3. Challenges in µMAS
3.1. Sample-Preparation
3.2. Detection Sensitivity
3.3. High-Throughput Analysis
4. But Why µMAS?
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pontes, J.G.M.; Brasil, A.J.M.; Cruz, G.C.F.; de Souza, R.N.; Tasic, L. NMR-based metabolomics strategies: Plants, animals and humans. Anal. Methods 2017, 9, 1078–1096. [Google Scholar] [CrossRef]
- Bingol, K.; Brüschweiler, R. Multidimensional Approaches to NMR-based metabolomics. Anal. Chem. 2014, 86, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Nagana Gowda, G.A.; Raftery, D. Recent advances in NMR-based metabolomics. Anal. Chem. 2017, 89, 490–510. [Google Scholar] [CrossRef] [PubMed]
- Zalesskiy, S.S.; Danieli, E.; Blümich, B.; Ananikov, V.P. Miniaturization of NMR systems: Desktop spectrometers, microcoil spectroscopy, and “NMR on a Chip” for chemistry, biochemistry, and industry. Chem. Rev. 2014, 114, 5641–5694. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.L.; Peck, T.L.; Webb, A.G.; Magin, R.L.; Sweedler, J.V. High-resolution microcoil 1H NMR for mass-limited, nanoliter-volume samples. Science 1995, 270, 1967–1970. [Google Scholar] [CrossRef]
- Kc, R.; Henry, I.D.; Park, G.H.J.; Raftery, D. New solenoidal microcoil NMR probe using zero-susceptibility. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2010, 17, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.H.; O’Connell, T.M. The application of micro-coil NMR probe technology to metabolomics of urine and serum. J. Biomol. NMR 2011, 49, 297–305. [Google Scholar] [CrossRef]
- Albert, K. LC ± NMR: Theory and Experiment; John Wiley & Sons: Chinchester, England, 2002; pp. 1–22. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/0470854820 (accessed on 3 December 2018).
- Lee, H.; Yoon, T.-J.; Figueiredo, J.-L.; Swirski, F.K.; Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. 2009, 106, 12459–12464. [Google Scholar] [CrossRef]
- Bakhtina, N.A.; MacKinnon, N.; Korvink, J.G. Advanced Microfluidic assays for Caenorhabditis elegans. In Advances in microfluidics—New Applications in Biology, Energy and Materials Sciences; Intechopen: London, UK, 2016; pp. 91–114. ISBN 9789537619992. Available online: https://www.intechopen.com/books/advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences/advanced-microfluidic-assays-for-caenorhabditis-elegans (accessed on 3 December 2018).
- Spengler, N.; Höfflin, J.; Moazenzadeh, A.; Mager, D.; MacKinnon, N.; Badilita, V.; Wallrabe, U.; Korvink, J.G. Heteronuclear micro-helmholtz coil facilitates μm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips. PLoS ONE 2016, 11, e0146384. [Google Scholar] [CrossRef]
- Janssen, H.; Brinkmann, A.; Van Eck, E.R.H. Microcoil high-resolution magic angle spinning NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 8722–8723. [Google Scholar] [CrossRef]
- Sakellariou, D.; Le Goff, G.; Jacquinot, J.-F. High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature 2007, 447, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Endo, Y.; Nemoto, T.; Utsumi, H.; Yamauchi, K.; Hioka, K.; Asakura, T. Very fast magic angle spinning 1H-14N 2D solid-state NMR: Sub-micro-liter sample data collection in a few minutes. J. Magn. Reson. 2011, 208, 44–48. [Google Scholar] [CrossRef] [PubMed]
- JEOL Resonance Inc. Released a 0.75-mm µMAS probe. In Proceedings of the 53rd Experimental Nuclear Magnetic Resonance Conference (ENC), Miami, FL, USA, 15–20 April 2012. [Google Scholar]
- Bruker. Released Magic Angle spinning above 100 kHz. In Proceedings of the 56th Experimental Nuclear Magnetic Resonance Conference (ENC), Pacific Grove, CA, USA, 19–24 April 2015. [Google Scholar]
- Deschamps, M. Ultrafast Magic Angle Spinning Nuclear Magnetic Resonance; Annual Reports on NMR, Academic Press, Elsevier Ltd.: Oxford, UK, 2014; pp. 109–144. ISBN 9780128001851. [Google Scholar]
- Agarwal, V.; Penzel, S.; Szekely, K.; Cadalbert, R.; Testori, E.; Oss, A.; Past, J.; Samoson, A.; Ernst, M.; Bçckmann, A.; et al. De Novo 3D Structure Determination from Sub-milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy. Angew. Chemie-Int. Ed. 2014, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Jiménez, B.; Li, X.; Holmes, E.; Nicholson, J.K.; Lindon, J.C.; Sakellariou, D. Evaluation of high resolution magic-angle coil spinning NMR spectroscopy for metabolic profiling of nanoliter tissue biopsies. Anal. Chem. 2012, 84, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Lacey, M.E.; Subramanian, R.; Olson, D.L.; Webb, A.G.; Sweedler, J.V. High-Resolution NMR Spectroscopy of Sample Volumes from 1 nL to 10 µL. Chem. Rev. 1999, 99, 3133–3152. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.; Ebbels, T.M.D.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Hu, J.; Burton, S.D.; Hoyt, D.W. High Resolution Magic Angle Spinning 1H NMR metabolic profiling of nanoliter biological tissues at high magnetic field. Chinese J. Magn. Reson. 2013, 30, 1–11. [Google Scholar]
- Wong, A.; Li, X.; Sakellariou, D. Refined magic-angle coil spinning resonator for nanoliter NMR spectroscopy: Enhanced spectral resolution. Anal. Chem. 2013, 85, 2021–2026. [Google Scholar] [CrossRef]
- Wong, A.; Boutin, C.; Aguiar, P.M. 1H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: A demonstrative study. Front. Chem. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Wong, A.; Li, X.; Molin, L.; Solari, F.; Elena-Herrmann, B.; Sakellariou, D. µHR-MAS spinning NMR Spectroscopy for Metabolic Phenotyping of Caenorhabditis Elegans. Anal. Chem. 2014, 86, 6064–6070. [Google Scholar] [CrossRef] [PubMed]
- Badilita, V.; Fassbender, B.; Kratt, K.; Wong, A.; Bonhomme, C.; Sakellariou, D.; Korvink, J.G.; Wallrabe, U. Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy. PLoS ONE 2012, 7, e42848. [Google Scholar] [CrossRef] [PubMed]
- Lehmann-Horn, J.A.; Jacquinot, J.F.; Ginefri, J.C.; Bonhomme, C.; Sakellariou, D. Monolithic MACS micro resonators. J. Magn. Reson. 2016, 271, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Endo, Y.; Nemoto, T.; Bouzier-Sore, A.-K.; Wong, A. High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HRμMAS probe. Analyst 2015, 140, 8097–8100. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Torres, C.; Huber, G.; Ichikawa, A.; Nishiyama, Y.; Wong, A. HR-μMAS NMR-Based Metabolomics: Localized Metabolic Profiling of a Garlic Clove with μg Tissues. Anal. Chem. 2018, 90, 13736–13743. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Duong, N.T.; Yamato, M.; Nakano, M.; Kume, S.; Tamura, Y.; Kataoka, Y.; Wong, A.; Nishiyama, Y. Capillary-inserted rotor design for HRμMAS NMR-based metabolomics on mass-limited neurospheres. Molecules 2017, 22, 1289. [Google Scholar] [CrossRef] [PubMed]
- Tate, A.R.; Foxall, P.J.D.; Holmes, E.; Moka, D.; Spraul, M.; Nicholson, J.K.; Lindon, J.C. Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra. NMR Biomed. 2000, 13, 64–71. [Google Scholar] [CrossRef]
- Cheng, L.L.; Newell, K.; Mallory, A.E.; Hyman, B.T.; Gonzalez, R.G. Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn. Reson. Imaging 2002, 20, 527–533. [Google Scholar] [CrossRef]
- Atherton, H.J.; Bailey, N.J.; Zhang, W.; Taylor, J.; Major, H.; Shockcor, J.; Clarke, K.; Griffin, J.L. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR- null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genomics 2006, 27, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.J.; Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017, 96, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, C. Pollution and its impact on wild animals: A meta-analysis on oxidative stress. Ecohealth 2010, 7, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Russo, R.; Haange, S.B.; Rolle-Kampczyk, U.; von Bergen, M.; Becker, J.M.; Liess, M. Identification of pesticide exposure-induced metabolic changes in mosquito larvae. Sci. Total Environ. 2018, 643, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.H.; Dong, C.D.; Chen, C.F.; Tsai, M.L.; Ju, Y.R.; Chen, T.M.; Chen, C.W. NMR-based metabolomics for the environmental assessment of Kaohsiung Harbor sediments exemplified by a marine amphipod (Hyalella azteca). Mar. Pollut. Bull. 2017, 124, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, A.D.; Alexander, L.E.; Song, Z.; Korte, A.R.; Yandeau-Nelson, M.D.; Nikolau, B.J.; Lee, Y.J. Spatial Mapping and Profiling of Metabolite Distributions during Germination. Plant Physiol. 2017, 174, 2532–2548. [Google Scholar] [CrossRef]
- Sarabia, L.D.; Boughton, B.A.; Rupasinghe, T.; van de Meene, A.M.L.; Callahan, D.L.; Hill, C.B.; Roessner, U. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress. Metabolomics 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Abreu, A.C.; Aguilera-Sáez, L.M.; Peña, A.; García-Valverde, M.; Marín, P.; Valera, D.L.; Fernández, I. NMR-Based Metabolomics Approach to Study the Influence of Different Conditions of Water Irrigation and Greenhouse Ventilation on Zucchini Crops. J. Agric. Food Chem. 2018, 66, 8422–8432. [Google Scholar] [CrossRef]
- Mucci, A.; Parenti, F.; Righi, V.; Schenetti, L. Citron and lemon under the lens of HR-MAS NMR spectroscopy. Food Chem. 2013, 141, 3167–3176. [Google Scholar] [CrossRef]
- Pérez, E.M.S.; Iglesias, M.J.; Ortiz, F.L.; Pérez, I.S.; Galera, M.M. Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening. Food Chem. 2010, 122, 877–887. [Google Scholar] [CrossRef]
- Albergamo, A.; Rotondo, A.; Salvo, A.; Pellizzeri, V.; Bua, D.G.; Maggio, A.; Cicero, N.; Dugo, G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by1H-NMR and ICP-MS. Nat. Prod. Res. 2017, 31, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Kinross, J.M.; Holmes, E.; Darzi, A.W.; Nicholson, J.K. Metabolic phenotyping for monitoring surgical patients. Lancet 2011, 377, 1817–1819. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas-Torres, C.; Wong, A. Current Developments in µMAS NMR Analysis for Metabolomics. Metabolites 2019, 9, 29. https://doi.org/10.3390/metabo9020029
Lucas-Torres C, Wong A. Current Developments in µMAS NMR Analysis for Metabolomics. Metabolites. 2019; 9(2):29. https://doi.org/10.3390/metabo9020029
Chicago/Turabian StyleLucas-Torres, Covadonga, and Alan Wong. 2019. "Current Developments in µMAS NMR Analysis for Metabolomics" Metabolites 9, no. 2: 29. https://doi.org/10.3390/metabo9020029
APA StyleLucas-Torres, C., & Wong, A. (2019). Current Developments in µMAS NMR Analysis for Metabolomics. Metabolites, 9(2), 29. https://doi.org/10.3390/metabo9020029