On the Implications of |Uμi| = |Uτi| in the Canonical Seesaw Mechanism
Abstract
:1. Introduction
For neutrino masses, the considerations have always been qualitative, and, despite some interesting attempts, there has never been a convincing quantitative model of the neutrino masses.
2. Some Basics of the Canonical Seesaw Mechanism
3. Implications of
3.1. Six Classes of F Satisfying
- The first class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- .
- The second class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- .
- The third class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- .
- The fourth class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- ,
where is an arbitrary real number. - The fifth class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- ,
where is an arbitrary real number. - The sixth class of F has the texture :
- ■
- ,
- ■
- ,
- ■
- ,
- ■
- ,
where is an arbitrary real number.
3.2. A Typical Scenario:
4. Regarding the Possible Minimal Flavor Symmetry
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. F1
Appendix A.2. F2
Appendix A.3. F3
Appendix A.4. F4
Appendix A.5. F5
Appendix A.6. F6
Appendix A.7. F7
Appendix A.8. F8
Appendix A.9. F9
Appendix A.10. F10
Appendix A.11. F11
Appendix A.12. F12
Appendix A.13. F13
Appendix A.14. F14
Appendix A.15. F15
Appendix A.16. F16
Appendix A.17. F17
Appendix A.18. F18
Appendix A.19. F19
Appendix A.20. F20
Appendix A.21. F21
Appendix A.22. F22
Appendix A.23. F23
Appendix A.24. F24
References
- Pauli, W. Offener Brief an die Gruppe der Radioaktiven bei der Gauvereins-Tagung zu Tübingen. In Proceedings of the Gauverein Conference, Tübingen, Germany, 4 December 1930. [Google Scholar]
- Brown, L.M. The Idea of the Neutrino. Phys. Today 1978, 31, 23–28. [Google Scholar] [CrossRef]
- Bahcall, J.N.; Davis, R., Jr. Solar Neutrinos: A Scientific Puzzle. Science 1976, 191, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Garcia, M.C.; Nir, Y. Neutrino Masses and Mixing: Evidence and Implications. Rev. Mod. Phys. 2003, 75, 345. [Google Scholar] [CrossRef]
- King, S.F. Neutrino Mass Models. Rept. Prog. Phys. 2004, 67, 107–158. [Google Scholar] [CrossRef]
- King, S.F. Models of Neutrino Mass, Mixing and CP Violation. J. Phys. G 2015, 42, 123001. [Google Scholar] [CrossRef]
- de Gouvêa, A. Neutrino Mass Models. Ann. Rev. Nucl. Part. Sci. 2016, 66, 197–217. [Google Scholar] [CrossRef]
- Minkowski, P. μ→eγ at a Rate of One out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef]
- Gando, A. et al. [KamLAND-Zen Collaboration] Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef]
- GERDA Collaboration. Background-free Search for Neutrinoless Double-β Decay of 76Ge with GERDA. Nature 2017, 544, 47–52. [Google Scholar] [CrossRef]
- Alfonso, K. et al. [CUORE Collaboration] Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0. Phys. Rev. Lett. 2015, 115, 102502. [Google Scholar] [CrossRef]
- EXO-200 Collaboration. Search for Majorana Neutrinos with the First Two Years of EXO-200 Data. Nature 2014, 510, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. Conf. Proc. C 1979, 790927, 315–321. [Google Scholar]
- Yanagida, T. Horizontal Gauge Symmetry and Masses of Neutrinos. Conf. Proc. C 1979, 7902131, 95–99. [Google Scholar]
- Glashow, S.L. The Future of Elementary Particle Physics. NATO Sci. Ser. B 1980, 61, 687. [Google Scholar]
- Mohapatra, R.N.; Senjanović, G. Neutrino Mass and Spontaneous Parity Violation. Phys. Rev. Lett 1980, 44, 912. [Google Scholar] [CrossRef]
- Magg, M.; Wetterich, C. Neutrino Mass Problem and Gauge Hierarchy. Phys. Lett. B 1980, 94, 61–64. [Google Scholar] [CrossRef]
- Lazarides, G.; Shafi, Q.; Wetterich, C. Proton Lifetime and Fermion Masses in an SO(10) Model. Nucl. Phys. B 1981, 181, 287–300. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanović, G. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. Phys. Rev. D 1981, 23, 165. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; He, X.-G.; Joshi, G.C. See-saw Neutrino Masses Induced by a Triplet of Leptons. Z. Phys. C 1989, 44, 441. [Google Scholar] [CrossRef]
- Cai, Y.; Han, T.; Li, T.; Ruiz, R. Lepton Number Violation: Seesaw Models and Their Collider Tests. Front. Phys. 2018, 6, 40. [Google Scholar] [CrossRef]
- Gluza, J. On Teraelectronvolt Majorana Neutrinos. Acta Phys. Polon. B 2002, 33, 1735–1746. [Google Scholar]
- Barger, V.; Marfatia, D.; Whisnant, K. Progress in the Physics of Massive Neutrinos. Int. J. Mod. Phys. E 2003, 12, 569–647. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Smirnov, A.Y. Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef]
- Rodejohann, W. Neutrino-less Double Beta Decay and Particle Physics. Int. J. Mod. Phys. E 2011, 20, 1833–1930. [Google Scholar] [CrossRef]
- Chen, M.-C.; Huang, J. TeV Scale Models of Neutrino Masses and Their Phenomenology. Mod. Phys. Lett. A 2011, 26, 1147–1167. [Google Scholar] [CrossRef]
- Atre, A.; Han, T.; Pascoli, S.; Zhang, B. The Search for Heavy Majorana Neutrinos. J. High Energy Phys. 2009, 2009, 030. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Dev, P.S.B.; Pilaftsis, A. Neutrinos and Collider Physics. New J. Phys. 2015, 17, 075019. [Google Scholar] [CrossRef]
- Witten, E. Lepton Number and Neutrino Masses. Nucl. Phys. B Proc. Suppl. 2001, 91, 3–8. [Google Scholar] [CrossRef]
- Bellerive, A.; Klein, J.R.; McDonald, A.B.; Noble, A.J.; Poon, A.W.P.; [SNO Collaboration]. The Sudbury Neutrino Observatory. Nucl. Phys. B 2016, 908, 30–51. [Google Scholar] [CrossRef]
- Abe, K. et al. [Super-Kamiokande Collaboration] Solar Neutrino Results in Super-Kamiokande-III. Phys. Rev. D 2011, 83, 052010. [Google Scholar] [CrossRef]
- Cao, J.; Luk, K.-B. An Overview of the Daya Bay Reactor Neutrino Experiment. Nucl. Phys. B 2016, 908, 62–73. [Google Scholar] [CrossRef]
- Crespo-Anadón, J.I. et al. [Double Chooz Collaboration] Double Chooz: Latest Results. Nucl. Part. Phys. Proc. 2015, 265–266, 99–104. [Google Scholar] [CrossRef]
- Abe, K. et al. [T2K Collaboration] The T2K Experiment. Nucl. Instrum. Meth. A 2011, 659, 106–135. [Google Scholar] [CrossRef]
- Dib, C.; Gribanov, V.; Kovalenko, S.; Schmidt, I. Lepton Number Violating Processes and Majorana Neutrinos. Part. Nucl. Lett. 2001, 106, 42–55. [Google Scholar]
- Drewes, M.; Klarić, J.; Klose, P. On Lepton Number Violation in Heavy Neutrino Decays at Colliders. J. High Energy Phys. 2019, 11, 032. [Google Scholar] [CrossRef]
- Workman, R.L. et al. [Particle Data Group] The Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Pontecorvo, B. Mesonium and Anti-mesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870. [Google Scholar] [CrossRef]
- Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP 1968, 26, 984. [Google Scholar]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The Fate of Hints: Updated Global Analysis of Three-flavor Neutrino Oscillations. J. High Energy Phys. 2020, 2020, 178. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Unfinished Fabric of the Three Neutrino Paradigm. Phys. Rev. D 2021, 104, 083031. [Google Scholar] [CrossRef]
- Xing, Z.-z. Identifying a Minimal Flavor Symmetry of the Seesaw Mechanism behind Neutrino Oscillations. J. High Energy Phys. 2022, 2022, 034. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; Zhou, S. Flavor Invariants and Renormalization-Group Equations in the Leptonic Sector with Massive Majorana Neutrinos. J. High Energy Phys. 2021, 2021, 053. [Google Scholar] [CrossRef]
- Lu, J. Comment on “Flavor Invariants and Renormalization-Group Equations in the Leptonic Sector with Massive Majorana Neutrinos”. J. High Energy Phys. 2022, 2022, 135. [Google Scholar] [CrossRef]
- Lu, J. (Reply to)2 “Comment on ‘Flavor Invariants and Renormalization-Group Equations in the Leptonic Sector with Massive Majorana Neutrinos”’. arXiv 2021, arXiv:2111.02729. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Chan, A.H.; Oh, C.H. On the Implications of |Uμi| = |Uτi| in the Canonical Seesaw Mechanism. Universe 2024, 10, 50. https://doi.org/10.3390/universe10010050
Lu J, Chan AH, Oh CH. On the Implications of |Uμi| = |Uτi| in the Canonical Seesaw Mechanism. Universe. 2024; 10(1):50. https://doi.org/10.3390/universe10010050
Chicago/Turabian StyleLu, Jianlong, Aik Hui Chan, and Choo Hiap Oh. 2024. "On the Implications of |Uμi| = |Uτi| in the Canonical Seesaw Mechanism" Universe 10, no. 1: 50. https://doi.org/10.3390/universe10010050
APA StyleLu, J., Chan, A. H., & Oh, C. H. (2024). On the Implications of |Uμi| = |Uτi| in the Canonical Seesaw Mechanism. Universe, 10(1), 50. https://doi.org/10.3390/universe10010050