Skip Content
You are currently on the new version of our website. Access the old version .

Universe

  • Congratulations to Prof. Roger Penrose, Advisory Board member of Universe, for receiving the Nobel Prize in Physics 2020.
Universe is a peer-reviewed, open access journal focused on theoretical, experimental, and observational progress in fundamental and applied physics, from circumterrestrial space to cosmological scenarios, and is published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Astronomy and Astrophysics)

All Articles (3,380)

We develop a fully gauge-invariant analysis of gravitational-wave polarizations in metric f(R) gravity with a particular focus on the modified Starobinsky model , whose constant-curvature solution Rd=4Λ provides a natural de Sitter background for both early- and late-time cosmology. Linearizing the field equations around this background, we derive the Klein–Gordon equation for the curvature perturbation δR and show that the scalar propagating mode acquires a mass , highlighting how the same scalar degree of freedom governs inflationary dynamics at high curvature and the propagation of gravitational waves in the current accelerating Universe. Using the scalar–vector–tensor decomposition and a decomposition of the perturbed Ricci tensor, we obtain a set of fully gauge-invariant propagation equations that isolate the contributions of the scalar, vector, and tensor modes in the presence of matter. We find that the tensor sector retains the two transverse–traceless polarizations of General Relativity, while the scalar sector contains an additional massive scalar propagating degree of freedom, which manifests through breathing and longitudinal tidal responses depending on the wave regime and detector frame. Through the geodesic deviation equation—computed both in a local Minkowski patch and in fully covariant de Sitter form—we independently recover the same polarization content and identify its tidal signatures. The resulting framework connects the extra scalar polarization to cosmological observables: the massive scalar propagating mode sets the range of the fifth force, influences the time evolution of gravitational potentials, and affects the propagation and dispersion of gravitational waves on cosmological scales. This provides a unified, gauge-invariant link between gravitational-wave phenomenology and the cosmological implications of metric f(R) gravity.

5 February 2026

Six polarization modes of gravitational waves.

To address image degradation in optical telescopes with fast focal ratios—a problem caused by the misalignment of optical elements during assembly and observation—this study proposes a high-precision calibration method for image quality detection and correction. The method substitutes parallel laser beams for starlight to generate the incident wavefront required for calibration. Low-order aberrations resulting from system misalignment are calculated from the centroid coordinate offsets of laser spots on defocused planes, thereby enabling feedback-controlled alignment adjustments. Simulations and experiments were conducted on a single parabolic mirror system with a diameter (D) of 500 mm and a focal ratio of F/3. The results indicate that for mirror tilt misalignments ranging from 2 to +2, the estimated error for the Zernike coefficients Z4Z6 is below 0.1λ (λ=650 nm). This accuracy meets the alignment requirements for telescopes with fast focal ratios and eliminates the need for large flat mirrors and clear night skies, which are traditionally required for outdoor calibration. Consequently, the method provides a low-cost, high-precision solution for the real-time calibration of telescopes at remote sites, such as those in Antarctica.

5 February 2026

A comparison of stellar images before and after alignment correction: (a,b) (before) show evident coma aberration in both defocused and in-focus states, while (c,d) (after adjustment of secondary mirror misalignment) meet the required precision.

During a period of intense solar activity and highly disturbed geomagnetic conditions, a large Forbush decrease began on 10 May 2024 accompanied by a historic geomagnetic storm that lasted for four days. This extreme geomagnetic disturbance classified as G5 according to “NOAA Space Weather Scale for Geomagnetic Storms” is referred to in the literature as the Mother’s Day Storm. This resulted from multiple, at least seven, Coronal Mass Ejections (CMEs) that had been occurring since 7 May. In addition, on 11 May, a powerful X5.8 class solar flare, reaching its maximum at 01:32 UT, was followed by an abrupt increase in proton flux with energies > 100 MeV (with onset on 11 May at 01:45 UT and peaking at 02:45 UT), as recorded by GOES satellites. This resulted in a Ground Level Enhancement (GLE), identified as GLE74, occurring on 11 May 2024 during the recovery phase of the deep Forbush decrease (~15%). This Solar Energetic Particle (SEP) event consisted of both impulsive and gradual components, where the high-energy tail of the gradual component was recorded by several stations of the worldwide ground-based neutron monitor network. Approximately 15 minutes after the onset of the SEP event and 40 minutes prior to its peak, an alert was issued by the GLE Alert++ system of the Athens Neutron Monitor Station of the National and Kapodistrian University of Athens (NKUA), available as a federated product on the ESA SWE Portal under the Space Radiation Expert Service Centre. In this paper, a description of the solar activity, i.e., solar flares and CMEs, occurring during this time period is given. Moreover, recordings of cosmic ray data obtained by ground-based neutron monitors are used to perform a detailed analysis of GLE74. Finally, the response of the NKUA GLE Alert++ system to GLE74 is thoroughly presented.

31 January 2026

Sunspots of AR13664 on 11 May 2024 from NASA SDO/HMI (a), the X5.8 solar flare on 11 May 2024 generated from AR13664 from NASA SDO/AIA 304 (b).

The Vortex State of Ultralight Dark Matter and the Fornax Timing Problem

  • Volodymyr Gorkavenko,
  • Oleh Barabash and
  • Eduard Gorbar
  • + 4 authors

We investigate the impact of the vortex state of ultralight dark matter (ULDM) on the dynamical friction acting on moving globular clusters. Comparing this force with that for the solitonic ground state, it is shown that the internal structure and rotation of the ULDM core strongly affect the orbital decay of globular clusters. In particular, co-directional rotation in a vortex state can lead to significant suppression of dynamic friction at certain distances where globular clusters and ULDM velocities match. Applying these findings to the Fornax dwarf galaxy, it is found that the Fornax timing problem is naturally alleviated.

30 January 2026

The gravitational potential with and without baryonic matter in ground (left) and vortex (right) cases. We take 
  
    ξ
    /
    R
    =
    0.5
  
 for the vortex state.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

New Discoveries in Astronomical Data
Reprint

New Discoveries in Astronomical Data

Editors: Yanxia Zhang, A-Li Luo
Quantum Gravity Phenomenology II
Reprint

Quantum Gravity Phenomenology II

Editors: Arundhati Dasgupta, Alfredo Iorio

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Universe - ISSN 2218-1997