X-Ray Views of Galactic Accreting Pulsars in High-Mass X-Ray Binaries
Abstract
:1. Introduction
2. Fundamental Physics in X-Ray Pulsars
2.1. Mass Transfer in Binary Stars
2.2. Interactions Between the Magnetosphere and Accretion Flows
2.3. Physics in the Vicinity of Magnetic Poles
3. Temporal Properties
3.1. Long-Term Behavior
3.1.1. Outbursts in BeXBs
3.1.2. SFXTs
3.2. X-Ray Pulsations
3.2.1. Pulse Profile
3.2.2. Spin Evolution
3.3. Aperiodic Variability
3.4. Superorbital Modulation
4. Spectral Properties
4.1. Continuum
4.2. Cyclotron Resonant Scattering Features
5. Polarimetry
6. Related Binary Systems
7. Multi-Wavelength Advances
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AXRPs | Accreting X-ray pulsars |
BeXBs | Be X-ray binaries |
BHs | Black holes |
BFM | Beat-frequency model |
CRSFs | Cyclotron resonant scattering features |
GPD | Gas-pressure-dominated |
HID | Hardness-intensity diagram |
HMXBs | High-mass X-ray binaries |
IMXBs | Intermediate-mass X-ray binaries |
KFM | Keplerian-frequency model |
LMC | Large Magellanic Cloud |
LMXBs | Low-mass X-ray binaries |
NSs | Neutron stars |
PA | Polarization angle |
PD | Polarization degree |
PULXs | Pulsating ultraluminous X-ray sources |
QPOs | Quasi-periodic oscillations |
RLO | Roche-lobe overflow |
RPD | Radiation-pressure-dominated |
RVM | Rotating vector model |
SFXTs | Supergiant fast X-ray transients |
SGXBs | Supergiant X-ray binaries |
SMC | Small Magellanic cloud |
ULXs | Ultraluminous X-ray sources |
XRBs | X-ray binaries |
1 | In this paper, we use “Galactic accreting pulsars” to include BeXBs in Magellanic Clouds. |
2 | is also estimated by Mushtukov et al. [52] considering that is not associated with the Eddington limit and using an exact Compton scattering cross-section. The result suggests that is not a monotonic function of B. |
3 | https://gammaray.nsstc.nasa.gov/gbm/science/pulsars.html, accessed on 6 December 2024. |
4 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelComptt.html, accessed on 6 December 2024. |
5 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/models/comptb.html, accessed on 6 December 2024. |
6 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node155.html, accessed on 6 December 2024. |
7 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelBwcycl.html, accessed on 6 December 2024. |
8 | We consider Her X-1 in this paper although it is an IMXB [209], because it shares a lot in common with the other AXRPs in HMXBs. |
9 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelPcfabs.html, accessed on 6 December 2024. |
10 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelGabs.html, accessed on 6 December 2024. |
11 | https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node247.html, accessed on 6 December 2024. |
12 |
References
- Giacconi, R.; Gursky, H.; Paolini, F.R.; Rossi, B.B. Evidence for X Rays from Sources Outside the Solar System. Phys. Rev. Lett. 1962, 9, 439–443. [Google Scholar] [CrossRef]
- Casares, J.; Jonker, P.G.; Israelian, G. X-Ray Binaries. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 1499. [Google Scholar] [CrossRef]
- Chaty, S. Accreting Binaries; Nature, Formation, and Evolution; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Grimm, H.J.; Gilfanov, M.; Sunyaev, R. The Milky Way in X-rays for an outside observer. Log(N)-Log(S) and luminosity function of X-ray binaries from RXTE/ASM data. Astron. Astrophys. 2002, 391, 923–944. [Google Scholar] [CrossRef]
- Corral-Santana, J.M.; Casares, J.; Muñoz-Darias, T.; Bauer, F.E.; Martínez-Pais, I.G.; Russell, D.M. BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 2016, 587, A61. [Google Scholar] [CrossRef]
- Remillard, R.A.; McClintock, J.E. X-Ray Properties of Black-Hole Binaries. Annu. Rev. Astron. Astrophys. 2006, 44, 49–92. [Google Scholar] [CrossRef]
- Done, C.; Gierliński, M.; Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask. Astron. Astrophys. Rev. 2007, 15, 1–66. [Google Scholar] [CrossRef]
- Bahramian, A.; Degenaar, N. Low-Mass X-ray Binaries. In Handbook of X-Ray and Gamma-Ray Astrophysics; Springer: Singapore, 2023; p. 120. [Google Scholar] [CrossRef]
- Di Salvo, T.; Papitto, A.; Marino, A.; Iaria, R.; Burderi, L. Low Magnetic-Field Neutron Stars in X-ray Binaries. arXiv 2023, arXiv:2311.12516. [Google Scholar] [CrossRef]
- Haberl, F.; Sturm, R.; Filipović, M.D.; Pietsch, W.; Crawford, E.J. SXP 1062, a young Be X-ray binary pulsar with long spin period. Implications for the neutron star birth spin. Astron. Astrophys. 2012, 537, L1. [Google Scholar] [CrossRef]
- Hénault-Brunet, V.; Oskinova, L.M.; Guerrero, M.A.; Sun, W.; Chu, Y.H.; Evans, C.J.; Gallagher, J.S.I.; Gruendl, R.A.; Reyes-Iturbide, J. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2012, 420, L13–L17. [Google Scholar] [CrossRef]
- Gvaramadze, V.V.; Kniazev, A.Y.; Oskinova, L.M. Discovery of a putative supernova remnant around the long-period X-ray pulsar SXP 1323 in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2019, 485, L6–L10. [Google Scholar] [CrossRef]
- Maitra, C.; Haberl, F.; Maggi, P.; Kavanagh, P.J.; Vasilopoulos, G.; Sasaki, M.; Filipović, M.D.; Udalski, A. XMMU J050722.1-684758: Discovery of a new Be X-ray binary pulsar likely associated with the supernova remnant MCSNR J0507-6847. Mon. Not. R. Astron. Soc. 2021, 504, 326–337. [Google Scholar] [CrossRef]
- Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition). Astron. Astrophys. 2006, 455, 1165–1168. [Google Scholar] [CrossRef]
- Neumann, M.; Avakyan, A.; Doroshenko, V.; Santangelo, A. XRBcats: Galactic High Mass X-ray Binary Catalogue★. Astron. Astrophys. 2023, 677, A134. [Google Scholar] [CrossRef]
- Fabbiano, G. Populations of X-Ray Sources in Galaxies. Annu. Rev. Astron. Astrophys. 2006, 44, 323–366. [Google Scholar] [CrossRef]
- Kaaret, P.; Feng, H.; Roberts, T.P. Ultraluminous X-Ray Sources. Annu. Rev. Astron. Astrophys. 2017, 55, 303–341. [Google Scholar] [CrossRef]
- King, A.; Lasota, J.P.; Middleton, M. Ultraluminous X-ray sources. New Astron. Rev. 2023, 96, 101672. [Google Scholar] [CrossRef]
- Grimm, H.J.; Gilfanov, M.; Sunyaev, R. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon. Not. R. Astron. Soc. 2003, 339, 793–809. [Google Scholar] [CrossRef]
- Mineo, S.; Gilfanov, M.; Sunyaev, R. X-ray emission from star-forming galaxies—I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 2012, 419, 2095–2115. [Google Scholar] [CrossRef]
- Gomez, S.; Grindlay, J.E. Optical Analysis and Modeling of HD96670, a New Black Hole X-Ray Binary Candidate. Astrophys. J. 2021, 913, 48. [Google Scholar] [CrossRef]
- Corbet, R.H.D. The three types of high-mass X-ray pulsator. Mon. Not. R. Astron. Soc. 1986, 220, 1047–1056. [Google Scholar] [CrossRef]
- Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J. High-mass X-ray binaries in the Magellanic Clouds. Astron. Astrophys. 2005, 442, 1135–1138. [Google Scholar] [CrossRef]
- Klus, H.; Ho, W.C.G.; Coe, M.J.; Corbet, R.H.D.; Townsend, L.J. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2014, 437, 3863–3882. [Google Scholar] [CrossRef]
- Weng, S.S.; Qian, L.; Wang, B.J.; Torres, D.F.; Papitto, A.; Jiang, P.; Xu, R.; Li, J.; Yan, J.Z.; Liu, Q.Z.; et al. Radio pulsations from a neutron star within the gamma-ray binary LS I +61∘ 303. Nat. Astron. 2022, 6, 698–702. [Google Scholar] [CrossRef]
- Hou, X.; Ge, M.Y.; Ji, L.; Zhang, S.N.; You, Y.; Tao, L.; Zhang, S.; Soria, R.; Feng, H.; Zhou, M.; et al. Fan-beamed X-Ray Emission from 1 to above 130 keV from the Ultraluminous X-Ray Pulsar RX J0209.6-7427 in the Small Magellanic Cloud. Astrophys. J. 2022, 938, 149. [Google Scholar] [CrossRef]
- Fortin, F.; García, F.; Simaz Bunzel, A.; Chaty, S. A catalogue of high-mass X-ray binaries in the Galaxy: From the INTEGRAL to the Gaia era. Astron. Astrophys. 2023, 671, A149. [Google Scholar] [CrossRef]
- Reig, P. Be/X-ray binaries. Astrophys. Space Sci. 2011, 332, 1–29. [Google Scholar] [CrossRef]
- Caballero, I.; Wilms, J. X-ray pulsars: A review. Mem. Soc. Astron. Italiana 2012, 83, 230. [Google Scholar] [CrossRef]
- Walter, R.; Lutovinov, A.A.; Bozzo, E.; Tsygankov, S.S. High-mass X-ray binaries in the Milky Way. A closer look with INTEGRAL. Astron. Astrophys. Rev. 2015, 23, 2. [Google Scholar] [CrossRef]
- Staubert, R.; Trümper, J.; Kendziorra, E.; Klochkov, D.; Postnov, K.; Kretschmar, P.; Pottschmidt, K.; Haberl, F.; Rothschild, R.E.; Santangelo, A.; et al. Cyclotron lines in highly magnetized neutron stars. Astron. Astrophys. 2019, 622, A61. [Google Scholar] [CrossRef]
- Kretschmar, P.; Fürst, F.; Sidoli, L.; Bozzo, E.; Alfonso-Garzón, J.; Bodaghee, A.; Chaty, S.; Chernyakova, M.; Ferrigno, C.; Manousakis, A.; et al. Advances in Understanding High-Mass X-ray Binaries with INTEGRALand Future Directions. New Astron. Rev. 2019, 86, 101546. [Google Scholar] [CrossRef]
- Mushtukov, A.; Tsygankov, S. Accreting strongly magnetised neutron stars: X-ray Pulsars. arXiv 2022, arXiv:2204.14185. [Google Scholar] [CrossRef]
- Fornasini, F.M.; Antoniou, V.; Dubus, G. High-mass X-ray Binaries. arXiv 2023, arXiv:2308.02645. [Google Scholar] [CrossRef]
- Poutanen, J.; Tsygankov, S.S.; Forsblom, S.V. X-ray Polarimetry of X-ray Pulsars. Galaxies 2024, 12, 46. [Google Scholar] [CrossRef]
- Bird, A.J.; Bazzano, A.; Bassani, L.; Capitanio, F.; Fiocchi, M.; Hill, A.B.; Malizia, A.; McBride, V.A.; Scaringi, S.; Sguera, V.; et al. The Fourth IBIS/ISGRI Soft Gamma-ray Survey Catalog. Astrophys. J. Suppl. Ser. 2010, 186, 1–9. [Google Scholar] [CrossRef]
- Haberl, F.; Sturm, R. High-mass X-ray binaries in the Small Magellanic Cloud. Astron. Astrophys. 2016, 586, A81. [Google Scholar] [CrossRef]
- Bildsten, L.; Chakrabarty, D.; Chiu, J.; Finger, M.H.; Koh, D.T.; Nelson, R.W.; Prince, T.A.; Rubin, B.C.; Scott, D.M.; Stollberg, M.; et al. Observations of Accreting Pulsars. Astrophys. J. Suppl. Ser. 1997, 113, 367–408. [Google Scholar] [CrossRef]
- Malacaria, C.; Jenke, P.; Roberts, O.J.; Wilson-Hodge, C.A.; Cleveland, W.H.; Mailyan, B.; GBM Accreting Pulsars Program Team. The Ups and Downs of Accreting X-Ray Pulsars: Decade-long Observations with the Fermi Gamma-Ray Burst Monitor. Astrophys. J. 2020, 896, 90. [Google Scholar] [CrossRef]
- Tauris, T.M.; van den Heuvel, E.P.J. Formation and evolution of compact stellar X-ray sources. In Compact Stellar X-Ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 623–665. [Google Scholar] [CrossRef]
- Van den Heuvel, E.P.J. The Formation and Evolution of Relativistic Binaries. In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence; Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A., Eds.; Astrophysics and Space Science Library; Springer: Dordrecht, The Netherlands, 2009; Volume 359, p. 125. [Google Scholar] [CrossRef]
- Chaty, S. Nature, Formation, and Evolution of High Mass X-Ray Binaries. In Evolution of Compact Binaries; Astronomical Society of the Pacific Conference Series; Schmidtobreick, L., Schreiber, M.R., Tappert, C., Eds.; Proc. wksp.: Viña del Mar, Chile, 2011; Volume 447, p. 29. [Google Scholar] [CrossRef]
- Tauris, T.M.; Kramer, M.; Freire, P.C.C.; Wex, N.; Janka, H.T.; Langer, N.; Podsiadlowski, P.; Bozzo, E.; Chaty, S.; Kruckow, M.U.; et al. Formation of Double Neutron Star Systems. Astrophys. J. 2017, 846, 170. [Google Scholar] [CrossRef]
- Vinciguerra, S.; Neijssel, C.J.; Vigna-Gómez, A.; Mandel, I.; Podsiadlowski, P.; Maccarone, T.J.; Nicholl, M.; Kingdon, S.; Perry, A.; Salemi, F. Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Mon. Not. R. Astron. Soc. 2020, 498, 4705–4720. [Google Scholar] [CrossRef]
- Castor, J.I.; Abbott, D.C.; Klein, R.I. Radiation-driven winds in Of stars. Astrophys. J. 1975, 195, 157–174. [Google Scholar] [CrossRef]
- Okazaki, A.T.; Negueruela, I. A natural explanation for periodic X-ray outbursts in Be/X-ray binaries. Astron. Astrophys. 2001, 377, 161–174. [Google Scholar] [CrossRef]
- Bozzo, E.; Falanga, M.; Stella, L. Are There Magnetars in High-Mass X-Ray Binaries? The Case of Supergiant Fast X-Ray Transients. Astrophys. J. 2008, 683, 1031–1044. [Google Scholar] [CrossRef]
- Harding, A.K.; Lai, D. Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 2006, 69, 2631–2708. [Google Scholar] [CrossRef]
- Basko, M.M.; Sunyaev, R.A. The limiting luminosity of accreting neutron stars with magnetic fields. Mon. Not. R. Astron. Soc. 1976, 175, 395–417. [Google Scholar] [CrossRef]
- Becker, P.A.; Wolff, M.T. Thermal and Bulk Comptonization in Accretion-powered X-Ray Pulsars. Astrophys. J. 2007, 654, 435–457. [Google Scholar] [CrossRef]
- Becker, P.A.; Klochkov, D.; Schönherr, G.; Nishimura, O.; Ferrigno, C.; Caballero, I.; Kretschmar, P.; Wolff, M.T.; Wilms, J.; Staubert, R. Spectral formation in accreting X-ray pulsars: Bimodal variation of the cyclotron energy with luminosity. Astron. Astrophys. 2012, 544, A123. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Poutanen, J. The critical accretion luminosity for magnetized neutron stars. Mon. Not. R. Astron. Soc. 2015, 447, 1847–1856. [Google Scholar] [CrossRef]
- Becker, P.A.; Wolff, M.T. A Generalized Analytical Model for Thermal and Bulk Comptonization in Accretion-powered X-Ray Pulsars. Astrophys. J. 2022, 939, 67. [Google Scholar] [CrossRef]
- Trümper, J.; Pietsch, W.; Reppin, C.; Sacco, B. Evidence for Strong Cyclotron Emission in the Hard X-Ray Spectrum of Her X-1. In Eighth Texas Symposium on Relativistic Astrophysics; Papagiannis, M.D., Ed.; New York Academy of Sciences: New York, NY, USA, 1977; Volume 302, p. 538. [Google Scholar] [CrossRef]
- Davidson, K.; Ostriker, J.P. Neutron-Star Accretion in a Stellar Wind: Model for a Pulsed X-Ray Source. Astrophys. J. 1973, 179, 585–598. [Google Scholar] [CrossRef]
- Ghosh, P.; Lamb, F.K. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources. Astrophys. J. 1979, 234, 296–316. [Google Scholar] [CrossRef]
- Davies, R.E.; Pringle, J.E. Spindown of neutron stars in close binary systems—II. Mon. Not. R. Astron. Soc. 1981, 196, 209–224. [Google Scholar] [CrossRef]
- Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L. Theory of quasi-spherical accretion in X-ray pulsars. Mon. Not. R. Astron. Soc. 2012, 420, 216–236. [Google Scholar] [CrossRef]
- Abolmasov, P.; Biryukov, A.; Popov, S.B. Spin Evolution of Neutron Stars. Galaxies 2024, 12, 7. [Google Scholar] [CrossRef]
- Meszaros, P.; Novick, R.; Szentgyorgyi, A.; Chanan, G.A.; Weisskopf, M.C. Astrophysical Implications and Observational Prospects of X-Ray Polarimetry. Astrophys. J. 1988, 324, 1056. [Google Scholar] [CrossRef]
- Caiazzo, I.; Heyl, J. Polarization of accreting X-ray pulsars. I. A new model. Mon. Not. R. Astron. Soc. 2021, 501, 109–128. [Google Scholar] [CrossRef]
- Doroshenko, V.; Poutanen, J.; Heyl, J.; Tsygankov, S.S.; Caiazzo, I.; Turolla, R.; Veledina, A.; Weisskopf, M.C.; Forsblom, S.V.; González-Caniulef, D.; et al. Complex variations in X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431. Astron. Astrophys. 2023, 677, A57. [Google Scholar] [CrossRef]
- Reig, P.; Fabregat, J.; Coe, M.J. A new correlation for Be/X-ray binaries: The orbital period-Hα equivalent width diagram. Astron. Astrophys. 1997, 322, 193–196. [Google Scholar]
- Clark, J.S.; Steele, I.A.; Fender, R.P.; Coe, M.J. Near IR spectroscopy of candidate B[e]/X-ray binaries. Astron. Astrophys. 1999, 348, 888–896. [Google Scholar]
- Coe, M.J.; Edge, W.R.T.; Galache, J.L.; McBride, V.A. Optical properties of Small Magellanic Cloud X-ray binaries. Mon. Not. R. Astron. Soc. 2005, 356, 502–514. [Google Scholar] [CrossRef]
- Charles, P.A.; Coe, M.J. Optical, ultraviolet and infrared observations of X-ray binaries. In Compact Stellar X-Ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 215–265. [Google Scholar]
- Chaty, S.; Rahoui, F.; Foellmi, C.; Tomsick, J.A.; Rodriguez, J.; Walter, R. Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star. Astron. Astrophys. 2008, 484, 783–800. [Google Scholar] [CrossRef]
- Rahoui, F.; Chaty, S.; Lagage, P.O.; Pantin, E. Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. II. The environment of the companion star. Astron. Astrophys. 2008, 484, 801–813. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Degenaar, N.; Russell, T.D.; Wijnands, R.; Bahramian, A.; Miller-Jones, J.C.A.; Hernández Santisteban, J.V.; Gallo, E.; Atri, P.; Plotkin, R.M.; et al. A new radio census of neutron star X-ray binaries. Mon. Not. R. Astron. Soc. 2021, 507, 3899–3922. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Soffitta, P.; Baldini, L.; Ramsey, B.D.; O’Dell, S.L.; Romani, R.W.; Matt, G.; Deininger, W.D.; Baumgartner, W.H.; Bellazzini, R.; et al. The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launch. J. Astron. Telesc. Instrum. Syst. 2022, 8, 026002. [Google Scholar] [CrossRef]
- Kudritzki, R.P.; Pauldrach, A.; Puls, J.; Abbott, D.C. Radiation-driven winds of hot stars. VI. Analytical solutions for wind models including the finite cone angle effect. Astron. Astrophys. 1989, 219, 205–218. [Google Scholar]
- Owocki, S.P.; Rybicki, G.B. Instabilities in line-driven stellar winds. I. Dependence on perturbation wavelength. Astrophys. J. 1984, 284, 337–350. [Google Scholar] [CrossRef]
- Owocki, S.P.; Castor, J.I.; Rybicki, G.B. Time-dependent Models of Radiatively Driven Stellar Winds. I. Nonlinear Evolution of Instabilities for a Pure Absorption Model. Astrophys. J. 1988, 335, 914. [Google Scholar] [CrossRef]
- Grinberg, V.; Hell, N.; El Mellah, I.; Neilsen, J.; Sander, A.A.C.; Leutenegger, M.; Fürst, F.; Huenemoerder, D.P.; Kretschmar, P.; Kühnel, M.; et al. The clumpy absorber in the high-mass X-ray binary Vela X-1. Astron. Astrophys. 2017, 608, A143. [Google Scholar] [CrossRef]
- Rivinius, T.; Carciofi, A.C.; Martayan, C. Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. Astron. Astrophys. Rev. 2013, 21, 69. [Google Scholar] [CrossRef]
- Okazaki, A.T.; Hayasaki, K.; Moritani, Y. Origin of Two Types of X-Ray Outbursts in Be/X-Ray Binaries. I. Accretion Scenarios. Publ. Astron. Soc. Pac. 2013, 65, 41. [Google Scholar] [CrossRef]
- Martin, R.G.; Nixon, C.; Armitage, P.J.; Lubow, S.H.; Price, D.J. Giant Outbursts in Be/X-Ray Binaries. Astrophys. J. Lett. 2014, 790, L34. [Google Scholar] [CrossRef]
- Ikhsanov, N.R. The origin of long-period X-ray pulsars. Mon. Not. R. Astron. Soc. 2007, 375, 698–704. [Google Scholar] [CrossRef]
- Ruffert, M. Non-axisymmetric wind-accretion simulations. II. Density gradients. Astron. Astrophys. 1999, 346, 861–877. [Google Scholar] [CrossRef]
- Lyutikov, M. Centrifugal barriers in magnetospheric accretion. Mon. Not. R. Astron. Soc. 2023, 520, 4315–4323. [Google Scholar] [CrossRef]
- Campana, S.; Stella, L.; Israel, G.L.; Moretti, A.; Parmar, A.N.; Orlandini, M. The Quiescent X-Ray Emission of Three Transient X-Ray Pulsars. Astrophys. J. 2002, 580, 389–393. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Lutovinov, A.A.; Doroshenko, V.; Mushtukov, A.A.; Suleimanov, V.; Poutanen, J. Propeller effect in two brightest transient X-ray pulsars: 4U 0115+63 and V 0332+53. Astron. Astrophys. 2016, 593, A16. [Google Scholar] [CrossRef]
- Ghosh, P.; Lamb, F.K. Accretion by rotating magnetic neutron stars. II. Radial and vertical structure of the transition zone in disk accretion. Astrophys. J. 1979, 232, 259–276. [Google Scholar] [CrossRef]
- Wang, Y.M. Disc accretion by magnetized neutron stars: A reassessment of the torque. Astron. Astrophys. 1987, 183, 257–264. [Google Scholar]
- Wang, Y.M. On the Torque Exerted by a Magnetically Threaded Accretion Disk. Astrophys. J. Lett. 1995, 449, L153. [Google Scholar] [CrossRef]
- Rappaport, S.A.; Fregeau, J.M.; Spruit, H. Accretion onto Fast X-Ray Pulsars. Astrophys. J. 2004, 606, 436–443. [Google Scholar] [CrossRef]
- Kluźniak, W.; Rappaport, S. Magnetically Torqued Thin Accretion Disks. Astrophys. J. 2007, 671, 1990–2005. [Google Scholar] [CrossRef]
- Shi, C.S.; Zhang, S.N.; Li, X.D. Super Strong Magnetic Fields of Neutron Stars in Be X-Ray Binaries Estimated with New Torque and Magnetosphere Models. Astrophys. J. 2015, 813, 91. [Google Scholar] [CrossRef]
- Bozzo, E.; Ascenzi, S.; Ducci, L.; Papitto, A.; Burderi, L.; Stella, L. Magnetospheric radius of an inclined rotator in the magnetically threaded disk model. Astron. Astrophys. 2018, 617, A126. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Chashkina, A.; Abolmasov, P.; Poutanen, J. Super-Eddington accretion on to a magnetized neutron star. Mon. Not. R. Astron. Soc. 2017, 470, 2799–2813. [Google Scholar] [CrossRef]
- Chashkina, A.; Lipunova, G.; Abolmasov, P.; Poutanen, J. Super-Eddington accretion discs with advection and outflows around magnetized neutron stars. Astron. Astrophys. 2019, 626, A18. [Google Scholar] [CrossRef]
- Doroshenko, V.; Zhang, S.N.; Santangelo, A.; Ji, L.; Tsygankov, S.; Mushtukov, A.; Qu, L.J.; Zhang, S.; Ge, M.Y.; Chen, Y.P.; et al. Hot disc of the Swift J0243.6+6124 revealed by Insight-HXMT. Mon. Not. R. Astron. Soc. 2020, 491, 1857–1867. [Google Scholar] [CrossRef]
- Ji, L.; Doroshenko, V.; Santangelo, A.; Güngör, C.; Zhang, S.; Ducci, L.; Zhang, S.N.; Ge, M.Y.; Qu, L.J.; Chen, Y.P.; et al. Timing analysis of 2S 1417-624 observed with NICER and Insight-HXMT. Mon. Not. R. Astron. Soc. 2020, 491, 1851–1856. [Google Scholar] [CrossRef]
- Kong, L.D.; Zhang, S.; Chen, Y.P.; Zhang, S.N.; Ji, L.; Doroshenko, V.; Wang, P.J.; Tao, L.; Ge, M.Y.; Liu, C.Z.; et al. Two Complete Spectral Transitions of Swift J0243.6+6124 Observed by Insight-HXMT. Astrophys. J. 2020, 902, 18. [Google Scholar] [CrossRef]
- Mönkkönen, J.; Tsygankov, S.S.; Mushtukov, A.A.; Doroshenko, V.; Suleimanov, V.F.; Poutanen, J. Evidence for the radiation-pressure dominated accretion disk in bursting pulsar GRO J1744-28 using timing analysis. Astron. Astrophys. 2019, 626, A106. [Google Scholar] [CrossRef]
- Liu, J.; Jenke, P.A.; Ji, L.; Zhang, S.N.; Zhang, S.; Ge, M.; Liao, J.; Li, X.; Song, L. Super-Eddington accretion of the first Galactic ultra-luminous X-ray pulsar Swift J0243.6+6124. Mon. Not. R. Astron. Soc. 2022, 512, 5686–5692. [Google Scholar] [CrossRef]
- Burnard, D.J.; Arons, J.; Lea, S.M. Accretion onto magnetized neutron stars—X-ray pulsars with intermediate rotation rates. Astrophys. J. 1983, 266, 175–187. [Google Scholar] [CrossRef]
- Shakura, N.I.; Postnov, K.A.; Kochetkova, A.Y.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A. Wind accretion: Theory and observations. Astronomy Reports 2015, 59, 645–655. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bhattacharya, D.; Mignone, A. MHD instabilities in accretion mounds—I. 2D axisymmetric simulations. Mon. Not. R. Astron. Soc. 2013, 430, 1976–1987. [Google Scholar] [CrossRef]
- Gornostaev, M.I. Three-dimensional modelling of accretion columns: Spatial asymmetry and self-consistent simulations. Mon. Not. R. Astron. Soc. 2021, 501, 564–575. [Google Scholar] [CrossRef]
- Basko, M.M.; Sunyaev, R.A. Radiative transfer in a strong magnetic field and accreting X-ray pulsars. Astron. Astrophys. 1975, 42, 311–321. [Google Scholar]
- Wang, Y.M. Spin-reversed accretion as the cause of intermittent spindown in slowX-ray pulsars. Astron. Astrophys. 1981, 102, 36–44. [Google Scholar]
- Postnov, K.A.; Gornostaev, M.I.; Klochkov, D.; Laplace, E.; Lukin, V.V.; Shakura, N.I. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars. Mon. Not. R. Astron. Soc. 2015, 452, 1601–1611. [Google Scholar] [CrossRef]
- Zhang, L.; Blaes, O.; Jiang, Y.F. Radiative relativistic magnetohydrodynamic simulations of neutron star column accretion in Cartesian geometry. Mon. Not. R. Astron. Soc. 2022, 515, 4371–4390. [Google Scholar] [CrossRef]
- Langer, S.H.; Rappaport, S. Low-luminosity accretion onto magnetized neutron stars. Astrophys. J. 1982, 257, 733–751. [Google Scholar] [CrossRef]
- Sokolova-Lapa, E.; Gornostaev, M.; Wilms, J.; Ballhausen, R.; Falkner, S.; Postnov, K.; Thalhammer, P.; Fürst, F.; García, J.A.; Shakura, N.; et al. X-ray emission from magnetized neutron star atmospheres at low mass-accretion rates. I. Phase-averaged spectrum. Astron. Astrophys. 2021, 651, A12. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Portegies Zwart, S. Spectrum formation in X-ray pulsars at very low mass accretion rate: Monte Carlo approach. Mon. Not. R. Astron. Soc. 2021, 503, 5193–5203. [Google Scholar] [CrossRef]
- Pfahl, E.; Rappaport, S.; Podsiadlowski, P.; Spruit, H. A New Class of High-Mass X-Ray Binaries: Implications for Core Collapse and Neutron Star Recoil. Astrophys. J. 2002, 574, 364–376. [Google Scholar] [CrossRef]
- Reig, P.; Roche, P. Discovery of two new persistent Be/X-ray pulsar systems. Mon. Not. R. Astron. Soc. 1999, 306, 100–106. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Krivonos, R.A.; Lutovinov, A.A. Broad-band observations of the Be/X-ray binary pulsar RX J0440.9+4431: Discovery of a cyclotron absorption line. Mon. Not. R. Astron. Soc. 2012, 421, 2407–2413. [Google Scholar] [CrossRef]
- Malacaria, C.; Huppenkothen, D.; Roberts, O.J.; Ducci, L.; Bozzo, E.; Jenke, P.; Wilson-Hodge, C.A.; Falanga, M. Discovery of spin-phase-dependent QPOs in the supercritical accretion regime from the X-ray pulsar RX J0440.9+4431. Astron. Astrophys. 2024, 681, A25. [Google Scholar] [CrossRef]
- Li, P.P.; Tao, L.; Ma, R.C.; Ge, M.Y.; Zhao, Q.C.; Zhao, S.J.; Zhang, L.; Bu, Q.C.; Kong, L.D.; Tuo, Y.L.; et al. Broad-band noise and quasi-periodic oscillation characteristics of the X-ray pulsar RX J0440.9+4431. Mon. Not. R. Astron. Soc. 2024, 529, 1187–1194. [Google Scholar] [CrossRef]
- Weng, S.S.; Ge, M.Y.; Zhao, H.H.; Wang, W.; Zhang, S.N.; Bian, W.H.; Yuan, Q.R. Swift Observations of SMC X-3 during Its 2016-2017 Super-Eddington Outburst. Astrophys. J. 2017, 843, 69. [Google Scholar] [CrossRef]
- Chandra, A.D.; Roy, J.; Agrawal, P.C.; Choudhury, M. Study of recent outburst in the Be/X-ray binary RX J0209.6-7427 with AstroSat: A new ultraluminous X-ray pulsar in the Magellanic Bridge? Mon. Not. R. Astron. Soc. 2020, 495, 2664–2672. [Google Scholar] [CrossRef]
- Wilson-Hodge, C.A.; Malacaria, C.; Jenke, P.A.; Jaisawal, G.K.; Kerr, M.; Wolff, M.T.; Arzoumanian, Z.; Chakrabarty, D.; Doty, J.P.; Gendreau, K.C.; et al. NICER and Fermi GBM Observations of the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124. Astrophys. J. 2018, 863, 9. [Google Scholar] [CrossRef]
- Tao, L.; Feng, H.; Zhang, S.; Bu, Q.; Zhang, S.; Qu, J.; Zhang, Y. Super-Eddington Accretion onto the Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124. Astrophys. J. 2019, 873, 19. [Google Scholar] [CrossRef]
- Reig, P.; Nespoli, E. Patterns of variability in Be/X-ray pulsars during giant outbursts. Astron. Astrophys. 2013, 551, A1. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Mushtukov, A.A.; Suleimanov, V.F.; Poutanen, J. Propeller effect in action in the ultraluminous accreting magnetar M82 X-2. Mon. Not. R. Astron. Soc. 2016, 457, 1101–1106. [Google Scholar] [CrossRef]
- Lutovinov, A.A.; Tsygankov, S.S.; Krivonos, R.A.; Molkov, S.V.; Poutanen, J. Propeller Effect in the Transient X-Ray Pulsar SMC X-2. Astrophys. J. 2017, 834, 209. [Google Scholar] [CrossRef]
- Sguera, V.; Barlow, E.J.; Bird, A.J.; Clark, D.J.; Dean, A.J.; Hill, A.B.; Moran, L.; Shaw, S.E.; Willis, D.R.; Bazzano, A.; et al. INTEGRAL observations of recurrent fast X-ray transient sources. Astron. Astrophys. 2005, 444, 221–231. [Google Scholar] [CrossRef]
- Sguera, V.; Bazzano, A.; Bird, A.J.; Dean, A.J.; Ubertini, P.; Barlow, E.J.; Bassani, L.; Clark, D.J.; Hill, A.B.; Malizia, A.; et al. Unveiling Supergiant Fast X-Ray Transient Sources with INTEGRAL. Astrophys. J. 2006, 646, 452–463. [Google Scholar] [CrossRef]
- Negueruela, I.; Smith, D.M.; Harrison, T.E.; Torrejón, J.M. The Optical Counterpart to the Peculiar X-Ray Transient XTE J1739-302. Astrophys. J. 2006, 638, 982–986. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Muno, M.P.; Morris, M.R.; Stolovy, S.R.; Cotera, A. Near-infrared Counterparts to Chandra X-ray Sources Toward the Galactic Center. II. Discovery of Wolf-Rayet Stars and O Supergiants. Astrophys. J. 2010, 710, 706–728. [Google Scholar] [CrossRef]
- Sidoli, L.; Ponti, G.; Sguera, V.; Esposito, P. Capturing the lowest luminosity state of the supergiant fast X-ray transient XTE J1739-302. Astron. Astrophys. 2023, 671, A150. [Google Scholar] [CrossRef]
- Romano, P.; Bozzo, E.; Mangano, V.; Esposito, P.; Israel, G.; Tiengo, A.; Campana, S.; Ducci, L.; Ferrigno, C.; Kennea, J.A. Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: Accretion from a transient disc? Astron. Astrophys. 2015, 576, L4. [Google Scholar] [CrossRef]
- Sidoli, L. Supergiant Fast X-ray Transients—A short review. In Proceedings of the XII Multifrequency Behaviour of High Energy Cosmic Sources Workshop (MULTIF2017), Palermo, Italy, 12–17 June 2017; p. 52. [Google Scholar] [CrossRef]
- Sidoli, L.; Romano, P.; Mangano, V.; Pellizzoni, A.; Kennea, J.A.; Cusumano, G.; Vercellone, S.; Paizis, A.; Burrows, D.N.; Gehrels, N. Monitoring Supergiant Fast X-Ray Transients with Swift. I. Behavior Outside Outbursts. Astrophys. J. 2008, 687, 1230–1235. [Google Scholar] [CrossRef]
- Bodaghee, A.; Walter, R.; Zurita Heras, J.A.; Bird, A.J.; Courvoisier, T.J.L.; Malizia, A.; Terrier, R.; Ubertini, P. IGR J16393-4643: A new heavily-obscured X-ray pulsar. Astron. Astrophys. 2006, 447, 1027–1034. [Google Scholar] [CrossRef]
- Sidoli, L.; Romano, P.; Mereghetti, S.; Paizis, A.; Vercellone, S.; Mangano, V.; Götz, D. An alternative hypothesis for the outburst mechanism in supergiant fast X-ray transients: The case of IGR J11215-5952. Astron. Astrophys. 2007, 476, 1307–1315. [Google Scholar] [CrossRef]
- Jain, C.; Paul, B.; Dutta, A. Discovery of a short orbital period in the Supergiant Fast X-ray Transient IGR J16479-4514. Mon. Not. R. Astron. Soc. 2009, 397, L11–L15. [Google Scholar] [CrossRef]
- Drave, S.P.; Bird, A.J.; Townsend, L.J.; Hill, A.B.; McBride, V.A.; Sguera, V.; Bazzano, A.; Clark, D.J. X-ray pulsations from the region of the supergiant fast X-ray transient IGR J17544-2619. Astron. Astrophys. 2012, 539, A21. [Google Scholar] [CrossRef]
- Vasilopoulos, G.; Maitra, C.; Haberl, F.; Hatzidimitriou, D.; Petropoulou, M. Identification of two new HMXBs in the LMC: An ∼2013 s pulsar and a probable SFXT. Mon. Not. R. Astron. Soc. 2018, 475, 220–231. [Google Scholar] [CrossRef]
- Romano, P.; Sidoli, L.; Cusumano, G.; Vercellone, S.; Mangano, V.; Krimm, H.A. Disentangling the System Geometry of the Supergiant Fast X-Ray Transient IGR J11215-5952 with Swift. Astrophys. J. 2009, 696, 2068–2074. [Google Scholar] [CrossRef]
- Romano, P.; Evans, P.A.; Bozzo, E.; Mangano, V.; Vercellone, S.; Guidorzi, C.; Ducci, L.; Kennea, J.A.; Barthelmy, S.D.; Palmer, D.M.; et al. The 100-month Swift catalogue of supergiant fast X-ray transients. II. SFXT diagnostics from outburst properties. Astron. Astrophys. 2023, 670, A127. [Google Scholar] [CrossRef]
- Negueruela, I.; Smith, D.M.; Reig, P.; Chaty, S.; Torrejón, J.M. Supergiant Fast X-ray Transients: A New Class of High Mass X-ray Binaries Unveiled by INTEGRAL. In The X-ray Universe 2005; Wilson, A., Ed.; ESA Publications Division: Madrid, Spain, 2006; Volume 604, p. 165. [Google Scholar] [CrossRef]
- Ducci, L.; Doroshenko, V.; Romano, P.; Santangelo, A.; Sasaki, M. Expected number of supergiant fast X-ray transients in the Milky Way. Astron. Astrophys. 2014, 568, A76. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Chaty, S.; Yan, J.Z. Be/X-ray binaries as the progenitors of the supergiant fast X-ray transients IGR J18483-0311 and IGR J11215-5952. Mon. Not. R. Astron. Soc. 2011, 415, 3349–3353. [Google Scholar] [CrossRef]
- in’t Zand, J.J.M. Chandra observation of the fast X-ray transient IGR J17544-2619: Evidence for a neutron star? Astron. Astrophys. 2005, 441, L1–L4. [Google Scholar] [CrossRef]
- Walter, R.; Zurita Heras, J. Probing clumpy stellar winds with a neutron star. Astron. Astrophys. 2007, 476, 335–340. [Google Scholar] [CrossRef]
- Giménez-García, A.; Shenar, T.; Torrejón, J.M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.R.; Rodes-Roca, J.J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; et al. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries. Astron. Astrophys. 2016, 591, A26. [Google Scholar] [CrossRef]
- Hainich, R.; Oskinova, L.M.; Torrejón, J.M.; Fuerst, F.; Bodaghee, A.; Shenar, T.; Sander, A.A.C.; Todt, H.; Spetzer, K.; Hamann, W.R. The stellar and wind parameters of six prototypical HMXBs and their evolutionary status. Astron. Astrophys. 2020, 634, A49. [Google Scholar] [CrossRef]
- Shakura, N.; Postnov, K.; Sidoli, L.; Paizis, A. Bright flares in supergiant fast X-ray transients. Mon. Not. R. Astron. Soc. 2014, 442, 2325–2330. [Google Scholar] [CrossRef]
- Sguera, V.; Ducci, L.; Sidoli, L.; Bazzano, A.; Bassani, L. XMM-Newton and INTEGRAL study of the SFXT IGR J18483-0311 in quiescence: Hint of a cyclotron emission feature? Mon. Not. R. Astron. Soc. 2010, 402, L49–L53. [Google Scholar] [CrossRef]
- Bhalerao, V.; Romano, P.; Tomsick, J.; Natalucci, L.; Smith, D.M.; Bellm, E.; Boggs, S.E.; Chakrabarty, D.; Christensen, F.E.; Craig, W.W.; et al. NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619. Mon. Not. R. Astron. Soc. 2015, 447, 2274–2281. [Google Scholar] [CrossRef]
- Bozzo, E.; Ferrigno, C.; Romano, P. NuSTAR and Swift observations of two supergiant fast X-ray transients: AX J1841.0-0536 and SAX J1818.6-1703. Mon. Not. R. Astron. Soc. 2024, 528, 863–872. [Google Scholar] [CrossRef]
- Bozzo, E.; Bhalerao, V.; Pradhan, P.; Tomsick, J.; Romano, P.; Ferrigno, C.; Chaty, S.; Oskinova, L.; Manousakis, A.; Walter, R.; et al. Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst. Astron. Astrophys. 2016, 596, A16. [Google Scholar] [CrossRef]
- Zhao, H.H.; Weng, S.S.; Ge, M.Y.; Bian, W.H.; Yuan, Q.R. Pulse phase-resolved analysis of SMC X-3 during its 2016-2017 super-Eddington outburst. Astrophys. Space Sci. 2018, 363, 21. [Google Scholar] [CrossRef]
- Salganik, A.; Tsygankov, S.S.; Doroshenko, V.; Molkov, S.V.; Lutovinov, A.A.; Mushtukov, A.A.; Poutanen, J. RX J0440.9+4431: Another supercritical X-ray pulsar. Mon. Not. R. Astron. Soc. 2023, 524, 5213–5224. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Hou, X.; Ge, M.Y.; Zhang, S.N.; Xiao, Y.X.; Tuo, Y.L.; Yang, Z.X.; Kong, L.D.; Qu, J.L.; Zhang, S.; et al. Searching for the Highest Energy of Pulsation and Critical Luminosity of Swift J0243.6+6124 Observed by Insight-HXMT. Res. Astron. Astrophys. 2024, 24, 055006. [Google Scholar] [CrossRef]
- Wang, P.J.; Kong, L.D.; Zhang, S.; Doroshenko, V.; Santangelo, A.; Ji, L.; Yorgancioglu, E.S.; Chen, Y.P.; Zhang, S.N.; Qu, J.L.; et al. Timing Properties of the X-Ray Accreting Pulsar 1A 0535+262 Studied with Insight-HXMT. Astrophys. J. 2022, 935, 125. [Google Scholar] [CrossRef]
- Falkner, S. Modeling of X-Ray Pulsars in Curved Space Time. Ph.D. Thesis, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany, 2018. [Google Scholar]
- Parmar, A.N.; White, N.E.; Stella, L. The Transient 42 Second X-Ray Pulsar EXO 2030+375. II. The Luminosity Dependence of the Pulse Profile. Astrophys. J. 1989, 338, 373. [Google Scholar] [CrossRef]
- Kraus, U.; Nollert, H.P.; Ruder, H.; Riffert, H. Analyzing X-Ray Pulsar Profiles: Asymmetry as a Key to Geometry and Beam Pattern. Astrophys. J. 1995, 450, 763. [Google Scholar] [CrossRef]
- Kraus, U.; Blum, S.; Schulte, J.; Ruder, H.; Meszaros, P. Analyzing X-Ray Pulsar Profiles: Geometry and Beam Pattern of Centaurus X-3. Astrophys. J. 1996, 467, 794. [Google Scholar] [CrossRef]
- Iwakiri, W.B.; Pottschmidt, K.; Falkner, S.; Hemphill, P.B.; Fürst, F.; Nishimura, O.; Schwarm, F.W.; Wolff, M.T.; Marcu-Cheatham, D.M.; Chakrabarty, D.; et al. Spectral and Timing Analysis of the Accretion-powered Pulsar 4U 1626-67 Observed with Suzaku and NuSTAR. Astrophys. J. 2019, 878, 121. [Google Scholar] [CrossRef]
- Hu, Y.F.; Ji, L.; Yu, C.; Wang, P.J.; Doroshenko, V.; Santangelo, A.; Saathoff, I.; Zhang, S.N.; Zhang, S.; Kong, L.D. Beam Pattern Evolution of Accreting X-Ray Pulsar 1A 0535+262 during Its 2020 Giant Outburst. Astrophys. J. 2023, 945, 138. [Google Scholar] [CrossRef]
- Saathoff, I.; Doroshenko, V.; Santangelo, A. Blind source separation for decomposing X-ray pulsar profiles. Introducing phase-correlated variability analysis (PCVA) with a case study of Cen X-3. Astron. Astrophys. 2024, 683, A52. [Google Scholar] [CrossRef]
- Thalhammer, P.; Ballhausen, R.; Sokolova-Lapa, E.; Stierhof, J.; Zainab, A.; Staubert, R.; Pottschmidt, K.; Coley, J.B.; Rothschild, R.E.; Jaisawal, G.K.; et al. The giant outburst of EXO 2030+375 I: Spectral and pulse profile evolution. arXiv 2024, arXiv:2405.20734. [Google Scholar] [CrossRef]
- Doroshenko, V.; Poutanen, J.; Tsygankov, S.S.; Suleimanov, V.F.; Bachetti, M.; Caiazzo, I.; Costa, E.; Di Marco, A.; Heyl, J.; La Monaca, F.; et al. Determination of X-ray pulsar geometry with IXPE polarimetry. Nat. Astron. 2022, 6, 1433–1443. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Doroshenko, V.; Poutanen, J.; Heyl, J.; Mushtukov, A.A.; Caiazzo, I.; Di Marco, A.; Forsblom, S.V.; González-Caniulef, D.; Klawin, M.; et al. The X-Ray Polarimetry View of the Accreting Pulsar Cen X-3. Astrophys. J. Lett. 2022, 941, L14. [Google Scholar] [CrossRef]
- Zhao, Q.C.; Li, H.C.; Tao, L.; Feng, H.; Zhang, S.N.; Walter, R.; Ge, M.Y.; Tong, H.; Ji, L.; Zhang, L.; et al. Polarization perspectives on Hercules X-1: Further constraining the geometry. Mon. Not. R. Astron. Soc. 2024, 531, 3935–3949. [Google Scholar] [CrossRef]
- Liu, J.; Vasilopoulos, G.; Ge, M.; Ji, L.; Weng, S.S.; Zhang, S.N.; Hou, X. Comparing the super-Eddington accretion of SMC X-3 and RX J0209.6-7427 with Swift J0243.6+6124. Mon. Not. R. Astron. Soc. 2022, 517, 3354–3361. [Google Scholar] [CrossRef]
- Popov, S.B.; Turolla, R. Initial spin periods of neutron stars in supernova remnants. Astrophys. Space Sci. 2012, 341, 457–464. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Frantsuzova, A.; Gourgouliatos, K.N.; Tsichli, S.; Konstantinou, L.; Popov, S.B. Initial periods and magnetic fields of neutron stars. Mon. Not. R. Astron. Soc. 2022, 514, 4606–4619. [Google Scholar] [CrossRef]
- Laycock, S.; Corbet, R.H.D.; Coe, M.J.; Marshall, F.E.; Markwardt, C.; Lochner, J. Long-Term Behavior of X-Ray Pulsars in the Small Magellanic Cloud. Astrophys. J. Suppl. Ser. 2005, 161, 96–117. [Google Scholar] [CrossRef]
- Kennea, J.A.; Coe, M.J.; Evans, P.A.; Waters, J.; Jasko, R.E. The First Year of S-CUBED: The Swift Small Magellanic Cloud Survey. Astrophys. J. 2018, 868, 47. [Google Scholar] [CrossRef]
- Lovelace, R.V.E.; Romanova, M.M.; Bisnovatyi-Kogan, G.S. Spin-up/spin-down of magnetized stars with accretion discs and outflows. Mon. Not. R. Astron. Soc. 1995, 275, 244–254. [Google Scholar] [CrossRef]
- Illarionov, A.F.; Sunyaev, R.A. Why the Number of Galactic X-ray Stars Is so Small? Astron. Astrophys. 1975, 39, 185. [Google Scholar]
- Urpin, V.; Konenkov, D.; Geppert, U. Evolution of neutron stars in high-mass X-ray binaries. Mon. Not. R. Astron. Soc. 1998, 299, 73–77. [Google Scholar] [CrossRef]
- Wang, W. Evidence for a magnetic neutron star in high-mass X-ray binary 4U 2206+54 with INTEGRAL/IBIS observations. Mon. Not. R. Astron. Soc. 2009, 398, 1428–1434. [Google Scholar] [CrossRef]
- Wang, W.; Tong, H. Understanding the coexistence of spin-up and spin-down behaviours in long-period X-ray pulsars. Mon. Not. R. Astron. Soc. 2020, 492, 762–769. [Google Scholar] [CrossRef]
- Epili, P.R.; Wang, W. AstroSat and Insight-HXMT Observations of the Long-period X-Ray Pulsar 4U 2206+54. Astrophys. J. 2024, 974, 282. [Google Scholar] [CrossRef]
- Finger, M.H.; Ikhsanov, N.R.; Wilson-Hodge, C.A.; Patel, S.K. Spin-Down of the Long-Period Accreting Pulsar 4U 2206+54. Astrophys. J. 2010, 709, 1249–1256. [Google Scholar] [CrossRef]
- Li, X.D.; van den Heuvel, E.P.J. Could 2S 0114+650 Be a Magnetar? Astrophys. J. Lett. 1999, 513, L45–L48. [Google Scholar] [CrossRef]
- Reig, P.; Torrejón, J.M.; Blay, P. Accreting magnetars: A new type of high-mass X-ray binaries? Mon. Not. R. Astron. Soc. 2012, 425, 595–604. [Google Scholar] [CrossRef]
- Wijnands, R.; van der Klis, M. The Broadband Power Spectra of X-Ray Binaries. Astrophys. J. 1999, 514, 939–944. [Google Scholar] [CrossRef]
- Van der Klis, M. Rapid X-ray Variability. In Compact Stellar X-Ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 39–112. [Google Scholar]
- Finger, M.H.; Wilson, R.B.; Harmon, B.A. Quasi-periodic Oscillations during a Giant Outburst of A0535+262. Astrophys. J. 1996, 459, 288. [Google Scholar] [CrossRef]
- Devasia, J.; James, M.; Paul, B.; Indulekha, K. RXTE-PCA observations of 1A 1118-61: Timing and spectral studies during an outburst. Mon. Not. R. Astron. Soc. 2011, 414, 1023–1031. [Google Scholar] [CrossRef]
- Raman, G.; Varun; Paul, B.; Bhattacharya, D. AstroSat detection of a mHz quasi-periodic oscillation and cyclotron line in IGR J19294+1816 during the 2019 outburst. Mon. Not. R. Astron. Soc. 2021, 508, 5578–5586. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, W.; Chen, X.; Yang, W.; Lu, F.J.; Song, L.M.; Qu, J.L.; Zhang, S.; Zhang, S.N. Detection of a quasi-periodic oscillation at 40 mHz in Cen X-3 with Insight-HXMT. Mon. Not. R. Astron. Soc. 2022, 516, 5579–5587. [Google Scholar] [CrossRef]
- Manikantan, H.; Paul, B.; Sharma, R.; Pradhan, P.; Rana, V. Energy dependence of quasi-periodic oscillations in accreting X-ray pulsars. Mon. Not. R. Astron. Soc. 2024, 531, 530–549. [Google Scholar] [CrossRef]
- Camero-Arranz, A.; Finger, M.H.; Wilson-Hodge, C.A.; Jenke, P.; Steele, I.; Coe, M.J.; Gutierrez-Soto, J.; Kretschmar, P.; Caballero, I.; Yan, J.; et al. X-Ray and Optical Observations of A 0535+26. Astrophys. J. 2012, 754, 20. [Google Scholar] [CrossRef]
- Ma, R.; Tao, L.; Zhang, S.N.; Ji, L.; Zhang, L.; Bu, Q.; Qu, J.; Reig, P.; Méndez, M.; Wang, Y.; et al. High energy millihertz quasi-periodic oscillations in 1A 0535 + 262 with Insight-HXMT challenge current models. Mon. Not. R. Astron. Soc. 2022, 517, 1988–1999. [Google Scholar] [CrossRef]
- Alpar, M.A.; Shaham, J. Is GX5—1 a millisecond pulsar? Nature 1985, 316, 239–241. [Google Scholar] [CrossRef]
- Van der Klis, M.; Stella, L.; White, N.; Jansen, F.; Parmar, A.N. Intensity and Source State Dependence of the Quasi-periodic Oscillations in Scorpius X-1. Astrophys. J. 1987, 316, 411. [Google Scholar] [CrossRef]
- Raichur, H.; Paul, B. Quasi-Periodic Oscillations in Cen X-3 and the Long-Term Intensity Variations. Astrophys. J. 2008, 685, 1109–1113. [Google Scholar] [CrossRef]
- Clarkson, W.I.; Charles, P.A.; Coe, M.J.; Laycock, S. Long-term properties of accretion discs in X-ray binaries—II. Stability of radiation-driven warping. Mon. Not. R. Astron. Soc. 2003, 343, 1213–1223. [Google Scholar] [CrossRef]
- Wen, L.; Levine, A.M.; Corbet, R.H.D.; Bradt, H.V. A Systematic Search for Periodicities in RXTE ASM Data. Astrophys. J. Suppl. Ser. 2006, 163, 372–392. [Google Scholar] [CrossRef]
- Corbet, R.H.D.; Krimm, H.A. Superorbital Periodic Modulation in Wind-accretion High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations. Astrophys. J. 2013, 778, 45. [Google Scholar] [CrossRef]
- Ogilvie, G.I.; Dubus, G. Precessing warped accretion discs in X-ray binaries. Mon. Not. R. Astron. Soc. 2001, 320, 485–503. [Google Scholar] [CrossRef]
- Pfeiffer, H.P.; Lai, D. Warping and Precession of Accretion Disks around Magnetic Stars: Nonlinear Evolution. Astrophys. J. 2004, 604, 766–774. [Google Scholar] [CrossRef]
- Kotze, M.M.; Charles, P.A. Characterizing X-ray binary long-term variability. Mon. Not. R. Astron. Soc. 2012, 420, 1575–1589. [Google Scholar] [CrossRef]
- Truemper, J.; Kahabka, P.; Oegelman, H.; Pietsch, W.; Voges, W. EXOSAT Observations of the 35 Day Cycle of Hercules X-1: Evidence for Neutron Star Precession. Astrophys. J. Lett. 1986, 300, L63. [Google Scholar] [CrossRef]
- Postnov, K.; Shakura, N.; Staubert, R.; Kochetkova, A.; Klochkov, D.; Wilms, J. Variable neutron star free precession in Hercules X-1 from evolution of RXTE X-ray pulse profiles with phase of the 35-d cycle. Mon. Not. R. Astron. Soc. 2013, 435, 1147–1164. [Google Scholar] [CrossRef]
- Rajoelimanana, A.F.; Charles, P.A.; Udalski, A. Very long-term optical variability of high-mass X-ray binaries in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2011, 413, 1600–1622. [Google Scholar] [CrossRef]
- Reig, P.; Negueruela, I.; Fabregat, J.; Chato, R.; Coe, M.J. Long-term optical/IR variability of the Be/X-ray binary LS V +44 17/RX J0440.9+4431. Astron. Astrophys. 2005, 440, 1079–1086. [Google Scholar] [CrossRef]
- Chen, A.M.; Takata, J.; Yu, Y.W. A Precessing Stellar Disk Model for Superorbital Modulations of the Gamma-Ray Binary LS I+61∘ 303. Astrophys. J. 2024, 973, 162. [Google Scholar] [CrossRef]
- Ferrigno, C.; Becker, P.A.; Segreto, A.; Mineo, T.; Santangelo, A. Study of the accreting pulsar 4U 0115+63 using a bulk and thermal Comptonization model. Astron. Astrophys. 2009, 498, 825–836. [Google Scholar] [CrossRef]
- Poutanen, J.; Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Nagirner, D.I.; Doroshenko, V.; Lutovinov, A.A. A Reflection Model for the Cyclotron Lines in the Spectra of X-Ray Pulsars. Astrophys. J. 2013, 777, 115. [Google Scholar] [CrossRef]
- Kylafis, N.D.; Trümper, J.E.; Loudas, N.A. Cyclotron line formation by reflection on the surface of a magnetic neutron star. Astron. Astrophys. 2021, 655, A39. [Google Scholar] [CrossRef]
- Mihara, T.; Makishima, K.; Nagase, F. Cyclotron line variability. Adv. Space Res. 1998, 22, 987–996. [Google Scholar] [CrossRef]
- Coburn, W.; Heindl, W.A.; Rothschild, R.E.; Gruber, D.E.; Kreykenbohm, I.; Wilms, J.; Kretschmar, P.; Staubert, R. Magnetic Fields of Accreting X-Ray Pulsars with the Rossi X-Ray Timing Explorer. Astrophys. J. 2002, 580, 394–412. [Google Scholar] [CrossRef]
- Weng, S.S.; Ge, M.Y.; Zhao, H.H. NuSTAR and XMM-Newton observations of SXP 59 during its 2017 giant outburst. Mon. Not. R. Astron. Soc. 2019, 489, 1000–1005. [Google Scholar] [CrossRef]
- Titarchuk, L. Generalized Comptonization Models and Application to the Recent High-Energy Observations. Astrophys. J. 1994, 434, 570. [Google Scholar] [CrossRef]
- Farinelli, R.; Titarchuk, L.; Paizis, A.; Frontera, F. A New Comptonization Model for Weakly Magnetized, Accreting Neutron Stars in Low-Mass X-Ray Binaries. Astrophys. J. 2008, 680, 602–614. [Google Scholar] [CrossRef]
- Farinelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star. Astron. Astrophys. 2012, 538, A67. [Google Scholar] [CrossRef]
- Reynolds, A.P.; Quaintrell, H.; Still, M.D.; Roche, P.; Chakrabarty, D.; Levine, S.E. A new mass estimate for Hercules X-1. Mon. Not. R. Astron. Soc. 1997, 288, 43–52. [Google Scholar] [CrossRef]
- Wolff, M.T.; Becker, P.A.; Gottlieb, A.M.; Fürst, F.; Hemphill, P.B.; Marcu-Cheatham, D.M.; Pottschmidt, K.; Schwarm, F.W.; Wilms, J.; Wood, K.S. The NuSTAR X-Ray Spectrum of Hercules X-1: A Radiation-dominated Radiative Shock. Astrophys. J. 2016, 831, 194. [Google Scholar] [CrossRef]
- Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P. RX J0440.9 + 4431: A persistent Be/X-ray binary in outburst. Astron. Astrophys. 2013, 553, A103. [Google Scholar] [CrossRef]
- Farinelli, R.; Ferrigno, C.; Bozzo, E.; Becker, P.A. A new model for the X-ray continuum of the magnetized accreting pulsars. Astron. Astrophys. 2016, 591, A29. [Google Scholar] [CrossRef]
- Thalhammer, P.; Bissinger, M.; Ballhausen, R.; Pottschmidt, K.; Wolff, M.T.; Stierhof, J.; Sokolova-Lapa, E.; Fürst, F.; Malacaria, C.; Gottlieb, A.; et al. Fitting strategies of accretion column models and application to the broadband spectrum of Cen X-3. Astron. Astrophys. 2021, 656, A105. [Google Scholar] [CrossRef]
- Hu, Y.; Ji, L.; Yu, C.; Yang, L. A Comprehensive Comparison of Spin-up and Spin-down Episodes of 4U 1538-522 Observed with NuSTAR. Astrophys. J. 2024, 971, 120. [Google Scholar] [CrossRef]
- Reig, P. Rapid spectral and timing variability of Be/X-ray binaries during type; II outbursts. Astron. Astrophys. 2008, 489, 725–740. [Google Scholar] [CrossRef]
- Doroshenko, V.; Tsygankov, S.S.; Mushtukov, A.A.; Lutovinov, A.A.; Santangelo, A.; Suleimanov, V.F.; Poutanen, J. Luminosity dependence of the cyclotron line and evidence for the accretion regime transition in V 0332+53. Mon. Not. R. Astron. Soc. 2017, 466, 2143–2150. [Google Scholar] [CrossRef]
- Wang, P.J.; Kong, L.D.; Zhang, S.; Chen, Y.P.; Zhang, S.N.; Qu, J.L.; Ji, L.; Tao, L.; Ge, M.Y.; Lu, F.J.; et al. Insight-HXMT observations of Swift J0243.6+6124: The evolution of RMS pulse fractions at super-Eddington luminosity. Mon. Not. R. Astron. Soc. 2020, 497, 5498–5506. [Google Scholar] [CrossRef]
- Kong, L.D.; Zhang, S.; Ji, L.; Reig, P.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Zhang, S.N.; Soria, R.; Chang, Z.; et al. Luminosity Dependence of the Cyclotron Line Energy in 1A 0535+262 Observed by Insight-HXMT during the 2020 Giant Outburst. Astrophys. J. Lett. 2021, 917, L38. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Doroshenko, V.; Mushtukov, A.A.; Suleimanov, V.F.; Lutovinov, A.A.; Poutanen, J. Cyclotron emission, absorption, and the two faces of X-ray pulsar A 0535+262. Mon. Not. R. Astron. Soc. 2019, 487, L30–L34. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Rouco Escorial, A.; Suleimanov, V.F.; Mushtukov, A.A.; Doroshenko, V.; Lutovinov, A.A.; Wijnands, R.; Poutanen, J. Dramatic spectral transition of X-ray pulsar GX 304-1 in low luminous state. Mon. Not. R. Astron. Soc. 2019, 483, L144–L148. [Google Scholar] [CrossRef]
- Doroshenko, V.; Santangelo, A.; Kreykenbohm, I.; Doroshenko, R. The hard X-ray emission of X Persei. Astron. Astrophys. 2012, 540, L1. [Google Scholar] [CrossRef]
- Xiao, H.; Ji, L. A Transition Discovered in the Subcritical Regime of 1A 0535+262. Astrophys. J. 2024, 963, 42. [Google Scholar] [CrossRef]
- Hickox, R.C.; Narayan, R.; Kallman, T.R. Origin of the Soft Excess in X-Ray Pulsars. Astrophys. J. 2004, 614, 881–896. [Google Scholar] [CrossRef]
- Manikantan, H.; Paul, B.; Rana, V. An investigation of the ’10 keV feature’ in the spectra of accretion powered X-ray pulsars with NuSTAR. Mon. Not. R. Astron. Soc. 2023, 526, 1–28. [Google Scholar] [CrossRef]
- Wilms, J.; Allen, A.; McCray, R. On the Absorption of X-Rays in the Interstellar Medium. Astrophys. J. 2000, 542, 914–924. [Google Scholar] [CrossRef]
- Suchy, S.; Pottschmidt, K.; Wilms, J.; Kreykenbohm, I.; Schönherr, G.; Kretschmar, P.; McBride, V.; Caballero, I.; Rothschild, R.E.; Grinberg, V. Pulse Phase-Resolved Analysis of the High-Mass X-Ray Binary Centaurus X-3 over Two Binary Orbits. Astrophys. J. 2008, 675, 1487–1498. [Google Scholar] [CrossRef]
- Islam, N.; Paul, B. Orbital phase resolved spectroscopy of GX 301-2 with MAXI. Mon. Not. R. Astron. Soc. 2014, 441, 2539–2545. [Google Scholar] [CrossRef]
- Balu, A.; Roy, K.; Manikantan, H.; Tamang, A.; Paul, B. Studying the X-ray absorption characteristics of Centaurus X-3 using nearly 14 years of MAXI/GSC data. arXiv 2024, arXiv:2410.17695. [Google Scholar] [CrossRef]
- Reynolds, M.T.; Miller, J.M. Chandra Grating Spectroscopy of the Be/X-ray Binary 1A 0535+262. Astrophys. J. 2010, 723, 1799–1805. [Google Scholar] [CrossRef]
- Miller, J.M.; Maitra, D.; Cackett, E.M.; Bhattacharyya, S.; Strohmayer, T.E. A Fast X-ray Disk Wind in the Transient Pulsar IGR J17480-2446 in Terzan 5. Astrophys. J. Lett. 2011, 731, L7. [Google Scholar] [CrossRef]
- Kosec, P.; Fabian, A.C.; Pinto, C.; Walton, D.J.; Dyda, S.; Reynolds, C.S. An ionized accretion disc wind in Hercules X-1. Mon. Not. R. Astron. Soc. 2020, 491, 3730–3750. [Google Scholar] [CrossRef]
- Kosec, P.; Kara, E.; Fabian, A.C.; Fürst, F.; Pinto, C.; Psaradaki, I.; Reynolds, C.S.; Rogantini, D.; Walton, D.J.; Ballhausen, R.; et al. Vertical wind structure in an X-ray binary revealed by a precessing accretion disk. Nat. Astron. 2023, 7, 715–723. [Google Scholar] [CrossRef]
- Torrejón, J.M.; Schulz, N.S.; Nowak, M.A.; Kallman, T.R. A Chandra Survey of Fluorescence Fe Lines in X-ray Binaries at High Resolution. Astrophys. J. 2010, 715, 947–958. [Google Scholar] [CrossRef]
- Tzanavaris, P.; Yaqoob, T. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-energy Transmission Grating X-Ray Spectroscopy. Astrophys. J. 2018, 855, 25. [Google Scholar] [CrossRef]
- Aftab, N.; Paul, B.; Kretschmar, P. X-Ray Reprocessing: Through the Eclipse Spectra of High-mass X-Ray Binaries with XMM-Newton. Astrophys. J. Suppl. Ser. 2019, 243, 29. [Google Scholar] [CrossRef]
- Ji, L.; Doroshenko, V.; Suleimanov, V.; Santangelo, A.; Orlandini, M.; Liu, J.; Ducci, L.; Zhang, S.N.; Nabizadeh, A.; Gavran, D.; et al. X-ray reprocessing in accreting pulsar GX 301-2 observed with Insight-HXMT. Mon. Not. R. Astron. Soc. 2021, 501, 2522–2530. [Google Scholar] [CrossRef]
- Truemper, J.; Pietsch, W.; Reppin, C.; Voges, W.; Staubert, R.; Kendziorra, E. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys. J. Lett. 1978, 219, L105–L110. [Google Scholar] [CrossRef]
- Heindl, W.A.; Coburn, W.; Gruber, D.E.; Pelling, M.R.; Rothschild, R.E.; Wilms, J.; Pottschmidt, K.; Staubert, R. Discovery of a Third Harmonic Cyclotron Resonance Scattering Feature in the X-Ray Spectrum of 4U 0115+63. Astrophys. J. Lett. 1999, 521, L49–L53. [Google Scholar] [CrossRef]
- Santangelo, A.; Segreto, A.; Giarrusso, S.; Dal Fiume, D.; Orlandini, M.; Parmar, A.N.; Oosterbroek, T.; Bulik, T.; Mihara, T.; Campana, S.; et al. A BEPPOSAX Study of the Pulsating Transient X0115+63: The First X-Ray Spectrum with Four Cyclotron Harmonic Features. Astrophys. J. Lett. 1999, 523, L85–L88. [Google Scholar] [CrossRef]
- Fürst, F.; Walton, D.J.; Heida, M.; Harrison, F.A.; Barret, D.; Brightman, M.; Fabian, A.C.; Middleton, M.J.; Pinto, C.; Rana, V.; et al. A tale of two periods: Determination of the orbital ephemeris of the super-Eddington pulsar NGC 7793 P13. Astron. Astrophys. 2018, 616, A186. [Google Scholar] [CrossRef]
- Liu, B.S.; Tao, L.; Zhang, S.N.; Li, X.D.; Ge, M.Y.; Qu, J.L.; Song, L.M.; Ji, L.; Zhang, S.; Santangelo, A.; et al. A Peculiar Cyclotron Line near 16 keV Detected in the 2015 Outburst of 4U 0115+63? Astrophys. J. 2020, 900, 41. [Google Scholar] [CrossRef]
- Roy, K.; Manikantan, H.; Paul, B. Luminosity dependence of the multiple cyclotron lines in 4U 0115+63. Astron. Astrophys. 2024, 690, A50. [Google Scholar] [CrossRef]
- Zalot, N.; Sokolova-Lapa, E.; Stierhof, J.; Ballhausen, R.; Zainab, A.; Pottschmidt, K.; Fürst, F.; Thalhammer, P.; Islam, N.; Diez, C.M.; et al. An in-depth analysis of the variable cyclotron lines in GX 301–2. Astron. Astrophys. 2024, 686, A95. [Google Scholar] [CrossRef]
- Meszaros, P.; Nagel, W. X-ray pulsar models. I. Angle-dependent cyclotron line formation and comptonization. Astrophys. J. 1985, 298, 147–160. [Google Scholar] [CrossRef]
- Nishimura, O. Formation Mechanism for Broad and Shallow Profiles of Cyclotron Lines in Accreting X-Ray Pulsars. Astrophys. J. 2008, 672, 1127–1136. [Google Scholar] [CrossRef]
- Nishimura, O. Superposition of Cyclotron Lines in Accreting X-Ray Pulsars. I. Long Spin Period. Astrophys. J. 2011, 730, 106. [Google Scholar] [CrossRef]
- Nishimura, O. Variations of Cyclotron Line Energy with Luminosity in Accreting X-Ray Pulsars. Astrophys. J. 2014, 781, 30. [Google Scholar] [CrossRef]
- Nishimura, O. Influence of bulk motion of an infalling plasma in line-forming region on cyclotron line in accreting X-ray pulsars. Publ. Astron. Soc. Pac. 2019, 71, 42. [Google Scholar] [CrossRef]
- Nishimura, O. Variations in energy of cyclotron lines with double structures formed in a line-forming region with bulk motion in accreting X-ray pulsars. Publ. Astron. Soc. Pac. 2022, 74, 961–973. [Google Scholar] [CrossRef]
- Schwarm, F.W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M.T.; Becker, P.A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; et al. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling. Astron. Astrophys. 2017, 597, A3. [Google Scholar] [CrossRef]
- Schwarm, F.W.; Ballhausen, R.; Falkner, S.; Schönherr, G.; Pottschmidt, K.; Wolff, M.T.; Becker, P.A.; Fürst, F.; Marcu-Cheatham, D.M.; Hemphill, P.B.; et al. Cyclotron resonant scattering feature simulations. II. Description of the CRSF simulation process. Astron. Astrophys. 2017, 601, A99. [Google Scholar] [CrossRef]
- Kumar, S.; Bala, S.; Bhattacharya, D. A new Monte Carlo radiative transfer simulation of cyclotron resonant scattering features. Mon. Not. R. Astron. Soc. 2022, 515, 914–927. [Google Scholar] [CrossRef]
- Loudas, N.; Kylafis, N.D.; Trümper, J. Cyclotron line formation in the radiative shock of an accreting magnetized neutron star. Astron. Astrophys. 2024, 685, A95. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bhattacharya, D. A phase-dependent view of cyclotron lines from model accretion mounds on neutron stars. Mon. Not. R. Astron. Soc. 2012, 420, 720–731. [Google Scholar] [CrossRef]
- Kong, L.D.; Zhang, S.; Zhang, S.N.; Ji, L.; Doroshenko, V.; Santangelo, A.; Chen, Y.P.; Lu, F.J.; Ge, M.Y.; Wang, P.J.; et al. Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124. Astrophys. J. Lett. 2022, 933, L3. [Google Scholar] [CrossRef]
- Staubert, R.; Shakura, N.I.; Postnov, K.; Wilms, J.; Rothschild, R.E.; Coburn, W.; Rodina, L.; Klochkov, D. Discovery of a flux-related change of the cyclotron line energy in Hercules X-1. Astron. Astrophys. 2007, 465, L25–L28. [Google Scholar] [CrossRef]
- Rothschild, R.E.; Kühnel, M.; Pottschmidt, K.; Hemphill, P.; Postnov, K.; Gornostaev, M.; Shakura, N.; Fürst, F.; Wilms, J.; Staubert, R.; et al. Discovery and modelling of a flattening of the positive cyclotron line/luminosity relation in GX 304-1 with RXTE. Mon. Not. R. Astron. Soc. 2017, 466, 2752–2779. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Tsygankov, S.S.; Serber, A.V.; Suleimanov, V.F.; Poutanen, J. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel. Mon. Not. R. Astron. Soc. 2015, 454, 2714–2721. [Google Scholar] [CrossRef]
- Shui, Q.C.; Zhang, S.; Wang, P.J.; Mushtukov, A.A.; Santangelo, A.; Zhang, S.N.; Kong, L.D.; Ji, L.; Chen, Y.P.; Doroshenko, V.; et al. Cyclotron line evolution revealed with pulse-to-pulse analysis in the 2020 outburst of 1A 0535+262. Mon. Not. R. Astron. Soc. 2024, 528, 7320–7332. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Tang, Y.M.; Ding, Y.Z.; Tuo, Y.L.; Mushtukov, A.A.; Nishimura, O.; Zhang, S.N.; Ge, M.Y.; Song, L.M.; et al. Relation of Cyclotron Resonant Energy and Luminosity in a Strongly Magnetized Neutron Star GRO J1008-57 Observed by Insight-HXMT. Astrophys. J. 2021, 919, 33. [Google Scholar] [CrossRef]
- Vybornov, V.; Doroshenko, V.; Staubert, R.; Santangelo, A. Changes in the cyclotron line energy on short and long timescales in V 0332+53. Astron. Astrophys. 2018, 610, A88. [Google Scholar] [CrossRef]
- Loudas, N.; Kylafis, N.D.; Trümper, J. A quantitative explanation of the cyclotron-line variation in accreting magnetic neutron stars of supercritical luminosity. Astron. Astrophys. 2024, 689, A75. [Google Scholar] [CrossRef]
- Staubert, R.; Klochkov, D.; Wilms, J.; Postnov, K.; Shakura, N.I.; Rothschild, R.E.; Fürst, F.; Harrison, F.A. Long-term change in the cyclotron line energy in Hercules X-1. Astron. Astrophys. 2014, 572, A119. [Google Scholar] [CrossRef]
- Staubert, R.; Klochkov, D.; Vybornov, V.; Wilms, J.; Harrison, F.A. Continued decay in the cyclotron line energy in Hercules X-1. Astron. Astrophys. 2016, 590, A91. [Google Scholar] [CrossRef]
- Staubert, R.; Ducci, L.; Ji, L.; Fürst, F.; Wilms, J.; Rothschild, R.E.; Pottschmidt, K.; Brumback, M.; Harrison, F. Cyclotron line energy in Hercules X-1: Stable after the decay. Astron. Astrophys. 2020, 642, A196. [Google Scholar] [CrossRef]
- Xiao, G.C.; Ji, L.; Staubert, R.; Ge, M.Y.; Zhang, S.; Zhang, S.N.; Santangelo, A.; Ducci, L.; Liao, J.Y.; Guo, C.C.; et al. Constant cyclotron line energy in Hercules X-1—Joint Insight-HXMT and NuSTAR observations. J. High Energy Astrophys. 2019, 23, 29–32. [Google Scholar] [CrossRef]
- Klochkov, D.; Staubert, R.; Postnov, K.; Wilms, J.; Rothschild, R.E.; Santangelo, A. Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Hercules X-1: Indication of an evolution of the magnetic field? Astron. Astrophys. 2015, 578, A88. [Google Scholar] [CrossRef]
- La Parola, V.; Cusumano, G.; Segreto, A.; D’Aì, A. The Swift-BAT monitoring reveals a long-term decay of the cyclotron line energy in Vela X-1. Mon. Not. R. Astron. Soc. 2016, 463, 185–190. [Google Scholar] [CrossRef]
- Ji, L.; Staubert, R.; Ducci, L.; Santangelo, A.; Zhang, S.; Chang, Z. Long-term evolutions of the cyclotron line energies in Her X-1, Vela X-1, and Cen X-3 as observed with Swift/BAT. Mon. Not. R. Astron. Soc. 2019, 484, 3797–3805. [Google Scholar] [CrossRef]
- Nagel, W. Radiative transfer in a strongly magnetized plasma. I—Effects of anisotropy. II—Effects of Comptonization. Astrophys. J. 1981, 251, 278–296. [Google Scholar] [CrossRef]
- Caiazzo, I.; Heyl, J. Polarization of accreting X-ray pulsars—II. Hercules X-1. Mon. Not. R. Astron. Soc. 2021, 501, 129–136. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Doroshenko, V.; Mushtukov, A.A.; Poutanen, J.; Di Marco, A.; Heyl, J.; La Monaca, F.; Forsblom, S.V.; Malacaria, C.; Marshall, H.L.; et al. X-ray pulsar GRO J1008–57 as an orthogonal rotator. Astron. Astrophys. 2023, 675, A48. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Tsygankov, S.S.; Poutanen, J.; Doroshenko, V.; Salganik, A.; Costa, E.; Marco, A.D.; Heyl, J.; Monaca, F.L.; Lutovinov, A.A.; et al. X-ray polarimetry of X-ray pulsar X Persei: Another orthogonal rotator? Mon. Not. R. Astron. Soc. 2023, 524, 2004–2014. [Google Scholar] [CrossRef]
- Forsblom, S.V.; Poutanen, J.; Tsygankov, S.S.; Bachetti, M.; Di Marco, A.; Doroshenko, V.; Heyl, J.; La Monaca, F.; Malacaria, C.; Marshall, H.L.; et al. IXPE Observations of the Quintessential Wind-accreting X-Ray Pulsar Vela X-1. Astrophys. J. Lett. 2023, 947, L20. [Google Scholar] [CrossRef]
- Lai, D.; Ho, W.C. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization. Phys. Rev. Lett. 2003, 91, 071101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.N.; Feroci, M.; Santangelo, A.; Dong, Y.W.; Feng, H.; Lu, F.J.; Nandra, K.; Wang, Z.S.; Zhang, S.; Bozzo, E.; et al. eXTP: Enhanced X-ray Timing and Polarization mission. In Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; den Herder, J.W.A., Takahashi, T., Bautz, M., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9905, p. 99051Q. [Google Scholar] [CrossRef]
- Dubus, G. Gamma-ray binaries and related systems. Astron. Astrophys. Rev. 2013, 21, 64. [Google Scholar] [CrossRef]
- Johnston, S.; Manchester, R.N.; Lyne, A.G.; Bailes, M.; Kaspi, V.M.; Qiao, G.; D’Amico, N. PSR 1259-63: A Binary Radio Pulsar with a Be Star Companion. Astrophys. J. Lett. 1992, 387, L37. [Google Scholar] [CrossRef]
- Camilo, F.; Ray, P.S.; Ransom, S.M.; Burgay, M.; Johnson, T.J.; Kerr, M.; Gotthelf, E.V.; Halpern, J.P.; Reynolds, J.; Romani, R.W.; et al. Radio Detection of LAT PSRs J1741-2054 and J2032+4127: No Longer Just Gamma-ray Pulsars. Astrophys. J. 2009, 705, 1–13. [Google Scholar] [CrossRef]
- Walton, D.J.; Mackenzie, A.D.A.; Gully, H.; Patel, N.R.; Roberts, T.P.; Earnshaw, H.P.; Mateos, S. A multimission catalogue of ultraluminous X-ray source candidates. Mon. Not. R. Astron. Soc. 2022, 509, 1587–1604. [Google Scholar] [CrossRef]
- Bachetti, M.; Harrison, F.A.; Walton, D.J.; Grefenstette, B.W.; Chakrabarty, D.; Fürst, F.; Barret, D.; Beloborodov, A.; Boggs, S.E.; Christensen, F.E.; et al. An ultraluminous X-ray source powered by an accreting neutron star. Nature 2014, 514, 202–204. [Google Scholar] [CrossRef]
- Fürst, F.; Walton, D.J.; Harrison, F.A.; Stern, D.; Barret, D.; Brightman, M.; Fabian, A.C.; Grefenstette, B.; Madsen, K.K.; Middleton, M.J.; et al. Discovery of Coherent Pulsations from the Ultraluminous X-Ray Source NGC 7793 P13. Astrophys. J. Lett. 2016, 831, L14. [Google Scholar] [CrossRef]
- Israel, G.L.; Belfiore, A.; Stella, L.; Esposito, P.; Casella, P.; De Luca, A.; Marelli, M.; Papitto, A.; Perri, M.; Puccetti, S.; et al. An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science 2017, 355, 817–819. [Google Scholar] [CrossRef]
- Israel, G.L.; Papitto, A.; Esposito, P.; Stella, L.; Zampieri, L.; Belfiore, A.; Rodríguez Castillo, G.A.; De Luca, A.; Tiengo, A.; Haberl, F.; et al. Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13. Mon. Not. R. Astron. Soc. 2017, 466, L48–L52. [Google Scholar] [CrossRef]
- Carpano, S.; Haberl, F.; Maitra, C.; Vasilopoulos, G. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Mon. Not. R. Astron. Soc. 2018, 476, L45–L49. [Google Scholar] [CrossRef]
- Sathyaprakash, R.; Roberts, T.P.; Walton, D.J.; Fuerst, F.; Bachetti, M.; Pinto, C.; Alston, W.N.; Earnshaw, H.P.; Fabian, A.C.; Middleton, M.J.; et al. The discovery of weak coherent pulsations in the ultraluminous X-ray source NGC 1313 X-2. Mon. Not. R. Astron. Soc. 2019, 488, L35–L40. [Google Scholar] [CrossRef]
- Rodríguez Castillo, G.A.; Israel, G.L.; Belfiore, A.; Bernardini, F.; Esposito, P.; Pintore, F.; De Luca, A.; Papitto, A.; Stella, L.; Tiengo, A.; et al. Discovery of a 2.8 s Pulsar in a 2 Day Orbit High-mass X-Ray Binary Powering the Ultraluminous X-Ray Source ULX-7 in M51. Astrophys. J. 2020, 895, 60. [Google Scholar] [CrossRef]
- Walton, D.J.; Fürst, F.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A.C.; Gehrels, N.; Harrison, F.A.; Heida, M.; Middleton, M.J.; et al. A 78 Day X-Ray Period Detected from NGC 5907 ULX1 by Swift. Astrophys. J. Lett. 2016, 827, L13. [Google Scholar] [CrossRef]
- Brightman, M.; Earnshaw, H.; Fürst, F.; Harrison, F.A.; Heida, M.; Israel, G.; Pike, S.; Stern, D.; Walton, D.J. Swift Monitoring of M51: A 38 day Superorbital Period for the Pulsar ULX7 and a New Transient Ultraluminous X-Ray Source. Astrophys. J. 2020, 895, 127. [Google Scholar] [CrossRef]
- Motch, C.; Pakull, M.W.; Soria, R.; Grisé, F.; Pietrzyński, G. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source. Nature 2014, 514, 198–201. [Google Scholar] [CrossRef]
- Hu, C.P.; Li, K.L.; Kong, A.K.H.; Ng, C.Y.; Lin, L.C.C. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13. Astrophys. J. Lett. 2017, 835, L9. [Google Scholar] [CrossRef]
- Koliopanos, F.; Vasilopoulos, G.; Godet, O.; Bachetti, M.; Webb, N.A.; Barret, D. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources. Astron. Astrophys. 2017, 608, A47. [Google Scholar] [CrossRef]
- Weng, S.S.; Feng, H. Evidence for Precession due to Supercritical Accretion in Ultraluminous X-Ray Sources. Astrophys. J. 2018, 853, 115. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Poutanen, J. On the maximum accretion luminosity of magnetized neutron stars: Connecting X-ray pulsars and ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2015, 454, 2539–2548. [Google Scholar] [CrossRef]
- Eksi, K.Y.; Andac, I.C.; Cikintoglu, S.; Gencali, A.A.; Gungor, C.; Oztekin, F. The ultraluminous X-ray source NuSTAR J095551+6940.8: A magnetar in a high-mass X-ray binary. Mon. Not. R. Astron. Soc. 2015, 448, L40–L42. [Google Scholar] [CrossRef]
- Tong, H. An accreting low magnetic field magnetar for the ultraluminous X-ray source in M82. Research in Astronomy and Astrophysics 2015, 15, 517. [Google Scholar] [CrossRef]
- King, A.; Lasota, J.P. No magnetars in ULXs. Mon. Not. R. Astron. Soc. 2019, 485, 3588–3594. [Google Scholar] [CrossRef]
- Erkut, M.H.; Türkoğlu, M.M.; Ekşi, K.Y.; Alpar, M.A. On the Magnetic Fields, Beaming Fractions, and Fastness Parameters of Pulsating Ultraluminous X-Ray Sources. Astrophys. J. 2020, 899, 97. [Google Scholar] [CrossRef]
- Brightman, M.; Harrison, F.A.; Fürst, F.; Middleton, M.J.; Walton, D.J.; Stern, D.; Fabian, A.C.; Heida, M.; Barret, D.; Bachetti, M. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nat. Astron. 2018, 2, 312–316. [Google Scholar] [CrossRef]
- Walton, D.J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A.C.; Grefenstette, B.W.; Harrison, F.A.; Heida, M.; Kennea, J.; et al. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton. Astrophys. J. Lett. 2018, 857, L3. [Google Scholar] [CrossRef]
- Middleton, M.J.; Brightman, M.; Pintore, F.; Bachetti, M.; Fabian, A.C.; Fürst, F.; Walton, D.J. On the magnetic field in M51 ULX-8. Mon. Not. R. Astron. Soc. 2019, 486, 2–9. [Google Scholar] [CrossRef]
- Motch, C.; Pakull, M.W.; Grisé, F.; Soria, R. The supergiant optical counterpart of ULX P13 in NGC 7793. Astron. Nachrichten 2011, 332, 367. [Google Scholar] [CrossRef]
- Heida, M.; Lau, R.M.; Davies, B.; Brightman, M.; Fürst, F.; Grefenstette, B.W.; Kennea, J.A.; Tramper, F.; Walton, D.J.; Harrison, F.A. Discovery of a Red Supergiant Donor Star in SN2010da/NGC 300 ULX-1. Astrophys. J. Lett. 2019, 883, L34. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astron. J. 2021, 161, 147. [Google Scholar] [CrossRef]
- Fortin, F.; García, F.; Chaty, S.; Chassande-Mottin, E.; Simaz Bunzel, A. Constraints to neutron-star kicks in high-mass X-ray binaries with Gaia EDR3. Astron. Astrophys. 2022, 665, A31. [Google Scholar] [CrossRef]
- Fortin, F.; García, F.; Chaty, S. Finding the birthplace of HMXBs in the Galaxy using Gaia EDR3: Kinematical age determination through orbit integration. Astron. Astrophys. 2022, 665, A69. [Google Scholar] [CrossRef]
- Reig, P.; Blinov, D. Warped disks during type II outbursts in Be/X-ray binaries: Evidence from optical polarimetry. Astron. Astrophys. 2018, 619, A19. [Google Scholar] [CrossRef]
- Reig, P.; Fabregat, J. Fast time optical variability in Be/X-ray binaries. Pulsation and rotation. Astron. Astrophys. 2022, 667, A18. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Degenaar, N.; Russell, T.D.; Wijnands, R.; Miller-Jones, J.C.A.; Sivakoff, G.R.; Hernández Santisteban, J.V. An evolving jet from a strongly magnetized accreting X-ray pulsar. Nature 2018, 562, 233–235. [Google Scholar] [CrossRef]
- van den Eijnden, J.; Degenaar, N.; Russell, T.D.; Miller-Jones, J.C.A.; Wijnands, R.; Miller, J.M.; King, A.L.; Rupen, M.P. Radio emission from the X-ray pulsar Her X-1: A jet launched by a strong magnetic field neutron star? Mon. Not. R. Astron. Soc. 2018, 473, L141–L145. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Degenaar, N.; Russell, T.D.; Hernández Santisteban, J.V.; Wijnands, R.; Miller-Jones, J.C.A.; Rouco Escorial, A.; Sivakoff, G.R. A re-establishing jet during an X-ray re-brightening of the Be/X-ray binary Swift J0243.6+6124. Mon. Not. R. Astron. Soc. 2019, 483, 4628–4638. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Degenaar, N.; Russell, T.D.; Miller-Jones, J.C.A.; Rouco Escorial, A.; Wijnands, R.; Sivakoff, G.R.; Hernández Santisteban, J.V. Radio monitoring of transient Be/X-ray binaries and the inflow-outflow coupling of strongly magnetized accreting neutron stars. Mon. Not. R. Astron. Soc. 2022, 516, 4844–4861. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Rouco Escorial, A.; Alfonso-Garzón, J.; Miller-Jones, J.C.A.; Kretschmar, P.; Fürst, F.; Degenaar, N.; Hernández Santisteban, J.V.; Sivakoff, G.R.; Russell, T.D.; et al. VLA monitoring of LS V +44 17 reveals scatter in the X-ray-radio correlation of Be/X-ray binaries. Mon. Not. R. Astron. Soc. 2024, 527, 4260–4271. [Google Scholar] [CrossRef]
- Van den Eijnden, J.; Robins, D.; Sharma, R.; Sánchez-Fernández, C.; Russell, T.D.; Degenaar, N.; Miller-Jones, J.C.A.; Maccarone, T. The variable radio jet of the accreting neutron star the Rapid Burster. Mon. Not. R. Astron. Soc. 2024, 533, 756–770. [Google Scholar] [CrossRef]
- Reina, C.; Treves, A.; Tarenghi, M. Gamma-ray Lines from Accreting Neutron Stars. Astron. Astrophys. 1974, 32, 317. [Google Scholar]
- Brecher, K.; Burrows, A. Gamma-ray lines from accreting neutron stars. Astrophys. J. 1980, 240, 642–647. [Google Scholar] [CrossRef]
- Bildsten, L.; Salpeter, E.E.; Wasserman, I. Helium Destruction and Gamma-Ray Line Emission in Accreting Neutron Stars. Astrophys. J. 1993, 408, 615. [Google Scholar] [CrossRef]
- Jean, P.; Guessoum, N. Neutron-capture and 2.22 MeV emission in the atmosphere of the secondary of an X-ray binary. Astron. Astrophys. 2001, 378, 509–521. [Google Scholar] [CrossRef]
- Ducci, L.; Santangelo, A.; Tsygankov, S.; Mushtukov, A.; Ferrigno, C. Searching for redshifted 2.2 MeV neutron-capture lines from accreting neutron stars: Theoretical X-ray luminosity requirements and INTEGRAL/SPI observations. arXiv 2024, arXiv:2409.05535. [Google Scholar] [CrossRef]
- McConnell, M.; Fletcher, S.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Ryan, J.; Schönfelder, V.; Strong, A.; van Dijk, R. COMPTEL all-sky imaging at 2.2 MeV. In Fourth Compton Symposium; American Institute of Physics Conference Series; Dermer, C.D., Strickman, M.S., Kurfess, J.D., Eds.; AIP: Long Island, NY, USA, 1997; Volume 410, pp. 1099–1103. [Google Scholar] [CrossRef]
- Boggs, S.E.; Smith, D.M. Search for Neutron-Capture Gamma-Ray Lines from A0535+26 in Outburst. Astrophys. J. Lett. 2006, 637, L121–L124. [Google Scholar] [CrossRef]
- Teegarden, B.J.; Watanabe, K. A Comprehensive Search for Gamma-Ray Lines in the First Year of Data from the INTEGRAL Spectrometer. Astrophys. J. 2006, 646, 965–981. [Google Scholar] [CrossRef]
- Çalişkan, Ş.; Kalemci, E.; Baring, M.G.; Boggs, S.E.; Kretschmar, P. Search for a Redshifted 2.2 MeV Neutron Capture Line from A0535+262 in Outburst. Astrophys. J. 2009, 694, 593–598. [Google Scholar] [CrossRef]
- Tomsick, J. et al. [COSI Collaboration] The Compton Spectrometer and Imager Project for MeV Astronomy. In Proceedings of the 37th International Cosmic Ray Conference, online, 12–23 July 2022; p. 652. [Google Scholar] [CrossRef]
- De Angelis, A.; Tatischeff, V.; Grenier, I.A.; McEnery, J.; Mallamaci, M.; Tavani, M.; Oberlack, U.; Hanlon, L.; Walter, R.; Argan, A.; et al. Science with e-ASTROGAM. A space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 2018, 19, 1–106. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, X.; Feng, H.; Zeng, M.; Huang, C.Y.; Hsiang-Yue, J.; Chang, H.K.; Li, H.; Chang, H.; Pan, X.; et al. MeV astrophysical spectroscopic surveyor (MASS): A compton telescope mission concept. Exp. Astron. 2024, 57, 2. [Google Scholar] [CrossRef]
Description | Reference |
---|---|
Recommended reviews | [28,29,30,31,32,33,34,35] |
Catalogue of HMXBs | [14,15,27,36,37] |
Achievements of BATSE, INTEGRAL, Fermi/GBM | [30,38,39] |
Formation and evolution of binaries | [19,40,41,42,43,44] |
Mass transfer in binary stars | [45,46,47] |
Fundamental physics in strong magnetic fields | [48] |
Accretion and radiation near polar caps | [49,50,51,52,53] |
Cyclotron resonant scattering features | [31,54] |
Accretion torques | [55,56,57,58,59] |
X-ray polarimetry | [60,61,62] |
Multi-wavelength information | [28,63,64,65,66,67,68,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, S.-S.; Ji, L. X-Ray Views of Galactic Accreting Pulsars in High-Mass X-Ray Binaries. Universe 2024, 10, 453. https://doi.org/10.3390/universe10120453
Weng S-S, Ji L. X-Ray Views of Galactic Accreting Pulsars in High-Mass X-Ray Binaries. Universe. 2024; 10(12):453. https://doi.org/10.3390/universe10120453
Chicago/Turabian StyleWeng, Shan-Shan, and Long Ji. 2024. "X-Ray Views of Galactic Accreting Pulsars in High-Mass X-Ray Binaries" Universe 10, no. 12: 453. https://doi.org/10.3390/universe10120453
APA StyleWeng, S.-S., & Ji, L. (2024). X-Ray Views of Galactic Accreting Pulsars in High-Mass X-Ray Binaries. Universe, 10(12), 453. https://doi.org/10.3390/universe10120453