Gamma-ray Bursts: 50 Years and Counting!
Abstract
:1. Introduction
2. The “Dark” Era (1973(67)–1991)
- GRBs were discovered in the 1960s by the Vela military satellites and later observed by other missions.
- The spatial distribution and total energy of GRBs remained unknown due to low instrumental capabilities and a low number of events.
- Galactic models suggested that GRBs were related to processes like supernovae, accretion onto compact objects and magnetic reconnection in magnetars.
- Galactic models predicted GRBs to be distributed on the galactic plane.
- Extragalactic models had high energy demands, and possible origins included collapsing white dwarfs, active galaxy cores, and neutron star mergers.
- The compactness problem and relativistic motion were already considered in these models.
- The relativistic fireball model was introduced to explain GRB emissions.
3. The BATSE Era (1991–1996)
- BATSE observed a large number of GRBs, leading to better modeling of GRB properties.
- GRBs come in all shapes and sizes, but two subgroups exist: short hard bursts and long soft bursts.
- GRBs are distributed isotropically in the sky. This marked the beginning of the end of galactic models. Still, they were not ruled out completely, and this led to the Great Debate in 1995.
4. The BeppoSAX Era (1996–2000/2004)
- A Low-Energy Concentrator Spectrometer (LECS);
- A Medium-Energy Concentrator Spectrometer (MECS);
- A High-Pressure Gas-Scintillation-Proportional Counter (HPGSPC);
- A Phoswich Detector System (PDS);
- Two Wide-Field Cameras (WFCs).
- In 1996, the BeppoSAX mission was launched with large-FoV gamma-ray instruments and X-ray instruments with great sensitivity, which allowed GRB signals to be localized with unprecedented precision.
- The discovery of afterglows led to the first multiwavelength observations, the measurement of redshifts (and therefore distances and energies), and the identification of host galaxies.
- The Amati, Yonetoku, and Ghirlanda correlations for long GRBs were discovered.
- In this era were the first indications of the GRB–supernova association.
- Since the X-ray telescopes and WFCs were not aligned, BeppoSAX had to be slewed after locating each GRB. The procedure had to be carried out from the ground, leading to slow replacements. For this reason, in this era were predominantly (almost exclusively) observed long GRBs.
5. The HETE-2 Era (2000–2004)
- The common spectral properties of SN1998bw and SN2003dh provided a “smoking gun” for their common origin, proving once and for all the association between long-duration GRBs and supernovae.
- Discovery of X-ray Flashes (XRFs), a subpopulation of GRBs.
- Together with BeppoSAX, HETE-2 enabled accurate localization (of the order of arcminutes) that kick-started the era of multiwavelength observations of GRBs before the advent of Swift.
6. The Swift Era (2004–Ongoing)
- Swift was able to detect the X-ray afterglow of short-duration GRBs, and thanks to multiwavelength follow-up campaigns, it was possible to identify their host galaxies: short GRBs are hosted in different galaxies (and outside of star formation regions) with respect to long GRBs. This was the first strong hint that the two categories might come from different precursors.
- The observation of the early GRB afterglows allowed the discovery of a complex multi-phase structure given by a superposition of processes, at odds with the theoretical models of the time.
- The detection of some “anomalous” signals challenged the use of the temporal criterion (short vs. long) alone for the classification of GRBs.
- Swift is able to detect the highest-redshift GRBs, which led to their use to study the Early Universe.
7. The High-Energy (AGILE and Fermi) Era (2007–Ongoing)
7.1. AGILE (2007–Ongoing)
7.2. Fermi (2008–Ongoing)
- By fully exploiting the production of electron–positron pairs in the detectors, it was possible to extend the energy range to hundreds of GeV.
- Comparing GRBs observed by both the GBM and LAT, it was found that the LAT band emission usually lasts much longer than the GBM band emission.
- Comparing the GBM and LAT data also shows that the GeV emission has a delayed start compared to the MeV emission.
- The possibility of performing unprecedentedly detailed spectral analysis in a wide spectral window, including HE, has provided very important information for understanding the composition of GRB jets and the prompt-emission mechanisms.
- The use of modern machine-learning techniques applied to AGILE detectors led to the identification of previously unidentified GRB signals.
8. The Birth of the Multi-Messenger Era (2017–Ongoing)
- GRBs have been believed to be multi-messenger emitters since 1989.
- To date, no neutrino detections have been observed in conjunction with GRB signals, placing progressively more stringent constraints on the flux of neutrinos from GRBs.
- GRB-GW170717A was the first-ever multi-messenger observation of a GRB, allowing for some unprecedented results in GRB and fundamental physics.
9. The Very High Energy Era (2019–Ongoing)
- Ground-based observations are needed to observe photons at TeV. There are two types of instruments, IACTs and EASs, with different performance and merits.
- Despite some claims (AIROBICC and Milagrito), no detection of GRB at TeV energies occurred until GRB190114C.
- To date, only five GRBs have been observed to have TeV emission with significance , and two more have been observed with significance . Despite enormous efforts, the detection of GRB emissions at TeV remains extremely difficult.
10. The Record Breaker: GRB221009A, the B.O.A.T.
To this, we would also add the following:We acknowledge the universe for timing this burst to arrive at Earth after the invention of GRB monitors but during our active research careers. Our token optical astronomer would like to complain about the alignment with the Galactic plane and requests that the next one avoid this issue.
This exceptional event continues to surprise us by challenging our understanding of such phenomena, and there is no doubt that it will be a matter of study and debate for many years.Our VHE colleagues would also request the next one not to arrive on a full moon night.
- GRB221009A was by far the brightest and most energetic burst ever observed by humans.
- The observation of photons at energies TeV challenges current theoretical models. Many mechanisms to explain such an emission have been proposed, but there is no consensus, yet.
- The observation of photons at energies TeV from a distance of is at odds with predictions about attenuation by the EBL. Among the possible explanations, exotic/fundamental physics effects (LIV vs. ALPs) have been proposed.
- There is evidence of a highly significant narrow emission feature at around 10 MeV. However, this feature has never been observed in other GRBs and was observed in GRB221009A only due to its extreme brightness.
11. Future Prospects
“Ai posteri l’ardua sentenza!” (Il Cinque Maggio, Manzoni).
12. Conclusions and Open Questions
- The Standard Model:
- −
- The standard fireball (plus internal/external shocks) model can explain many features observed in prompt GRBs and afterglows … before the Swift, HE, and VHE eras. More realistic assumptions are needed (ejecta, environment).
- −
- What is the nature of GRB jets?
- Long GRBs:
- −
- Collapsar vs. magnetar: which is dominant?
- −
- Where are the GRB remnants?
- −
- The nature of subluminous vs. ultraluminous GRBs: what determines the difference?
- Short GRBs:
- −
- Are all short-hard GRBs compact binary mergers? NS-NS or NS-BH mergers?
- −
- How can hard long GRB “spikes” be distinguished from short GRBs?
- GRBs as probes of the Early Universe:
- −
- What is reionizing the IGM?
- −
- Did the reionization begin at ?
- −
- Do Pop III stars make luminous GRBs?
- GRB221009A and other extreme events:
- −
- How are ≥10 TeV photons produced?
- −
- Are UHECRs accelerated in high numbers in GRBs? Why are there still no associated detections of GRBs and neutrinos (only upper limits)?
- −
- How is it possible that ≥10 TeV photons arrived from despite the theoretically predicted EBL absorption? Is the signal of exotic or fundamental physics effects (LIV, ALPs, other)?
- −
- Does the narrow ∼10 MeV emission component seen in GRB221009A really exist? Is this a characteristic of this burst only or of all GRBs?
- Experimental development: how can we develop new instruments to make new and better observations?
- −
- Large sky coverage with high localization capabilities/better angular resolutions to observe more signals (better statistics). Large-single-satellite missions vs. distributed geometries?
- −
- Better spectroscopic capabilities over wider energy ranges.
- −
- Better timing capabilities to characterize the light curves.
- −
- Ability to measure gamma-ray polarization to distinguish emission mechanisms.
- −
- Better follow-up strategies (and collaborations) for reliable multi-messenger observations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGNs | Active Galactic Nuclei |
ALP | Axion-Like Particle |
BH | Black Hole |
EAS | Extensive Air Shower experiment |
EBL | Extragalactic Background Light |
FOV | Field Of View |
GCN | GRB Coordinate Network |
GRB | Gamma-Ray Burst |
GW | Gravitational Wave |
IACT | Imaging Atmospheric Cherenkov Telescope |
LIV | Lorentz Invariance Violation |
NFI | Near-Field Instrument |
NS | Neutron Star |
SGR | Soft Gamma Repeater |
SN | Supernovae |
UHECR | Ultra-High-Energy Cosmic Ray |
References
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. 1973, 182, L85. [Google Scholar] [CrossRef]
- Cline, T.L.; Desai, U.D.; Klebesadel, R.W.; Strong, I.B. Energy Spectra of Cosmic Gamma-Ray Bursts. Astrophys. J. 1973, 185, L1. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golenetskii, S.V.; Il’Inskii, V.N. Flare of cosmic gamma radiation as observed with “Cosmos-461” satellite. Sov. J. Exp. Theor. Phys. Lett. 1974, 19, 77. [Google Scholar]
- Mazets, E.P.; Golenetskii, S.V.; Ilinskii, V.N.; Panov, V.N.; Aptekar, R.L.; Gurian, I.A.; Proskura, M.P.; Sokolov, I.A.; Sokolova, Z.I.; Kharitonova, T.V. Catalog of cosmic gamma-ray bursts from the KONUS experiment data. Astrophys. Space Sci. 1981, 80, 3–83. [Google Scholar] [CrossRef]
- Murakami, T.; Fujii, M.; Hayashida, K.; Itoh, M.; Nishimura, J. Evidence for cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga. Nature 1988, 335, 234–235. [Google Scholar] [CrossRef]
- Fenimore, E.E.; Conner, J.P.; Epstein, R.I.; Klebesadel, R.W.; Laros, J.G.; Yoshida, A.; Fujii, M.; Hayashida, K.; Itoh, M.; Murakami, T.; et al. Interpretation of Multiple Absorption Features in a Gamma-Ray Burst Spectrum. Astrophys. J. 1988, 335, L71. [Google Scholar] [CrossRef]
- Nemiroff, R.J. A Century of Gamma Ray Burst Models. Comments Astrophys. 1994, 17, 189. [Google Scholar] [CrossRef]
- Colgate, S.A. Prompt gamma rays and X-rays from supernovae. Can. J. Phys. Suppl. 1968, 46, 476. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, R.X.; Qiao, G.J. Nature and Nurture: A Model for Soft Gamma-Ray Repeaters. Astrophys. J. 2000, 545, L127–L130. [Google Scholar] [CrossRef]
- Prilutskii, O.F.; Usov, V.V. On the Nature of γ-ray Bursts. Astrophys. Space Sci. 1975, 34, 395–401. [Google Scholar] [CrossRef]
- Ruderman, M. Theories of gamma γ-ray bursts. Seventh Tex. Symp. Relativ. Astrophys. 1975, 262, 164–180. [Google Scholar] [CrossRef]
- Cavallo, G.; Rees, M.J. A qualitative study of cosmic fireballs and γ-ray bursts. Mon. Not. R. Astron. Soc. 1978, 183, 359–365. [Google Scholar] [CrossRef]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.S.; Pendleton, G.N. The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results. Nasa Conf. Publ. 1992, 3137, 26–34. [Google Scholar]
- Norris, J.P.; Nemiroff, R.J.; Bonnell, J.T.; Scargle, J.D.; Kouveliotou, C.; Paciesas, W.S.; Meegan, C.A.; Fishman, G.J. Attributes of Pulses in Long Bright Gamma-Ray Bursts. Astrophys. J. 1996, 459, 393. [Google Scholar] [CrossRef]
- Fenimore, E.E.; in ’t Zand, J.J.M.; Norris, J.P.; Bonnell, J.T.; Nemiroff, R.J. Gamma-Ray Burst Peak Duration as a Function of Energy. Astrophys. J. 1995, 448, L101. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J. 1993, 413, L101. [Google Scholar] [CrossRef]
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity. Astrophys. J. 1993, 413, 281. [Google Scholar] [CrossRef]
- Briggs, M.S.; Paciesas, W.S.; Pendleton, G.N.; Meegan, C.A.; Fishman, G.J.; Horack, J.M.; Brock, M.N.; Kouveliotou, C.; Hartmann, D.H.; Hakkila, J. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts. Astrophys. J. 1996, 459, 40. [Google Scholar] [CrossRef]
- Meegan, C.A.; Fishman, G.J.; Wilson, R.B.; Paciesas, W.S.; Pendleton, G.N.; Horack, J.M.; Brock, M.N.; Kouveliotou, C. Spatial distribution of γ-ray bursts observed by BATSE. Nature 1992, 355, 143–145. [Google Scholar] [CrossRef]
- Mészáros, P.; Rees, M.J. Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts. Astrophys. J. 1997, 476, 232–237. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273. [Google Scholar] [CrossRef]
- Usov, V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 1992, 357, 472–474. [Google Scholar] [CrossRef]
- Paciesas, W.S.; Meegan, C.A.; Pendleton, G.N.; Briggs, M.S.; Kouveliotou, C.; Koshut, T.M.; Lestrade, J.P.; McCollough, M.L.; Brainerd, J.J.; Hakkila, J.; et al. The Fourth BATSE Gamma-Ray Burst Catalog (Revised). ApJS 1999, 122, 465–495. [Google Scholar] [CrossRef]
- Piro, L.; Scarsi, L.; Butler, R.C. SAX: The wideband mission for x-ray astronomy. In Proceedings of the X-ray and EUV/FUV Spectroscopy and Polarimetry, San Diego, CA, USA, 11–12 July 1995; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Fineschi, S., Ed.; Volume 2517, pp. 169–181. [Google Scholar] [CrossRef]
- Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; in’t Zand, J.; Fiore, F.; Cinti, M.N.; Dal Fiume, D.; Nicastro, L.; Orlandini, M.; et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 1997, 387, 783–785. [Google Scholar] [CrossRef]
- van Paradijs, J.; Groot, P.J.; Galama, T.; Kouveliotou, C.; Strom, R.G.; Telting, J.; Rutten, R.G.M.; Fishman, G.J.; Meegan, C.A.; Pettini, M.; et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 1997, 386, 686–689. [Google Scholar] [CrossRef]
- Frail, D.A.; Kulkarni, S.R.; Nicastro, L.; Feroci, M.; Taylor, G.B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 1997, 389, 261–263. [Google Scholar] [CrossRef]
- Metzger, M.R.; Djorgovski, S.G.; Kulkarni, S.R.; Steidel, C.C.; Adelberger, K.L.; Frail, D.A.; Costa, E.; Frontera, F. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 1997, 387, 878–880. [Google Scholar] [CrossRef]
- Amati, L.; Frontera, F.; Tavani, M.; in’t Zand, J.J.M.; Antonelli, A.; Costa, E.; Feroci, M.; Guidorzi, C.; Heise, J.; Masetti, N.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 2002, 390, 81–89. [Google Scholar] [CrossRef]
- Amati, L. The Ep,i-Eiso correlation in gamma-ray bursts: Updated observational status, re-analysis and main implications. Mon. Not. R. Astron. Soc. 2006, 372, 233–245. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, R.; Inoue, A.K.; Ioka, K. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J. 2004, 609, 935–951. [Google Scholar] [CrossRef]
- Nakar, E.; Piran, T. Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2005, 360, L73–L76. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Firmani, C.; Cabrera, J.I. The Epeak-Eiso plane of long gamma-ray bursts and selection effects. Mon. Not. R. Astron. Soc. 2008, 387, 319–330. [Google Scholar] [CrossRef]
- Liang, E.W.; Dai, Z.G.; Wu, X.F. The Luminosity-Ep Relation within Gamma-Ray Bursts and the Implications for Fireball Models. Astrophys. J. 2004, 606, L29–L32. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Firmani, C. Short versus long gamma-ray bursts: Spectra, energetics, and luminosities. Astron. Astrophys. 2009, 496, 585–595. [Google Scholar] [CrossRef]
- Rees, M.J.; Meszaros, P. Relativistic fireballs—Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41. [Google Scholar] [CrossRef]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. 1998, 497, L17–L20. [Google Scholar] [CrossRef]
- Sari, R.; Piran, T. Predictions for the Very Early Afterglow and the Optical Flash. Astrophys. J. 1999, 520, 641–649. [Google Scholar] [CrossRef]
- Harrison, F.A.; Bloom, J.S.; Frail, D.A.; Sari, R.; Kulkarni, S.R.; Djorgovski, S.G.; Axelrod, T.; Mould, J.; Schmidt, B.P.; Wieringa, M.H.; et al. Optical and Radio Observations of the Afterglow from GRB 990510: Evidence for a Jet. Astrophys. J. 1999, 523, L121–L124. [Google Scholar] [CrossRef]
- Frail, D.A.; Kulkarni, S.R.; Sari, R.; Djorgovski, S.G.; Bloom, J.S.; Galama, T.J.; Reichart, D.E.; Berger, E.; Harrison, F.A.; Price, P.A.; et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. Astrophys. J. 2001, 562, L55–L58. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-Ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? Astrophys. J. 2002, 571, 876–879. [Google Scholar] [CrossRef]
- Rossi, E.; Lazzati, D.; Rees, M.J. Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. Mon. Not. R. Astron. Soc. 2002, 332, 945–950. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum. Astrophys. J. 2004, 616, 331–338. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D.; Firmani, C. Gamma-Ray Bursts: New Rulers to Measure the Universe. Astrophys. J. 2004, 613, L13–L16. [Google Scholar] [CrossRef]
- Fruchter, A.S.; Thorsett, S.E.; Metzger, M.R.; Sahu, K.C.; Petro, L.; Livio, M.; Ferguson, H.; Pian, E.; Hogg, D.W.; Galama, T.; et al. Hubble Space Telescope and Palomar Imaging of GRB 990123: Implications for the Nature of Gamma-Ray Bursts and Their Hosts. Astrophys. J. 1999, 519, L13–L16. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E.; Hartmann, D.H. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts. Astrophys. J. 1999, 526, 152–177. [Google Scholar] [CrossRef]
- Paczyński, B. Are Gamma-Ray Bursts in Star-Forming Regions? Astrophys. J. 1998, 494, L45–L48. [Google Scholar] [CrossRef]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670–672. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Frail, D.A.; Wieringa, M.H.; Ekers, R.D.; Sadler, E.M.; Wark, R.M.; Higdon, J.L.; Phinney, E.S.; Bloom, J.S. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 1998, 395, 663–669. [Google Scholar] [CrossRef]
- Bloom, J.S.; Kulkarni, S.R.; Djorgovski, S.G.; Eichelberger, A.C.; Côté, P.; Blakeslee, J.P.; Odewahn, S.C.; Harrison, F.A.; Frail, D.A.; Filippenko, A.V.; et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 1999, 401, 453–456. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E.; Heger, A. Supernovae, Jets, and Collapsars. Astrophys. J. 2001, 550, 410–425. [Google Scholar] [CrossRef]
- Ramirez-Ruiz, E.; Celotti, A.; Rees, M.J. Events in the life of a cocoon surrounding a light, collapsar jet. Mon. Not. R. Astron. Soc. 2002, 337, 1349–1356. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E.; Herant, M.; Davies, M.B. Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts. Astrophys. J. 1999, 520, 650–660. [Google Scholar] [CrossRef]
- Salgado, M.; Bonazzola, S.; Gourgoulhon, E.; Haensel, P. High precision rotating neutron star models. I. Analysis of neutron star properties. Astron. Astrophys. 1994, 291, 155–170. [Google Scholar]
- Vietri, M.; Stella, L. A Gamma-Ray Burst Model with Small Baryon Contamination. Astrophys. J. 1998, 507, L45–L48. [Google Scholar] [CrossRef]
- Dar, A.; De Rújula, A. The Cannonball Model of Gamma Ray Bursts: Spectral and Temporal Properties of the Gamma Rays. arXiv 2000, arXiv:astro-ph/0012227. [Google Scholar] [CrossRef]
- Ricker, G.R.; Atteia, J.L.; Crew, G.B.; Doty, J.P.; Fenimore, E.E.; Galassi, M.; Graziani, C.; Hurley, K.; Jernigan, J.G.; Kawai, N.; et al. The High Energy Transient Explorer (HETE): Mission and Science Overview. In Proceedings of the Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission, Woods Hole, MA, USA, 5–9 November 2001; American Institute of Physics Conference Series. Ricker, G.R., Vanderspek, R.K., Eds.; Volume 662, pp. 3–16. [Google Scholar] [CrossRef]
- Hjorth, J.; Sollerman, J.; Møller, P.; Fynbo, J.P.U.; Woosley, S.E.; Kouveliotou, C.; Tanvir, N.R.; Greiner, J.; Andersen, M.I.; Castro-Tirado, A.J.; et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 2003, 423, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Matheson, T.; Garnavich, P.M.; Stanek, K.Z.; Bersier, D.; Holland, S.T.; Krisciunas, K.; Caldwell, N.; Berlind, P.; Bloom, J.S.; Bolte, M.; et al. Photometry and Spectroscopy of GRB 030329 and Its Associated Supernova 2003dh: The First Two Months. Astrophys. J. 2003, 599, 394–407. [Google Scholar] [CrossRef]
- Stanek, K.Z.; Matheson, T.; Garnavich, P.M.; Martini, P.; Berlind, P.; Caldwell, N.; Challis, P.; Brown, W.R.; Schild, R.; Krisciunas, K.; et al. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys. J. 2003, 591, L17–L20. [Google Scholar] [CrossRef]
- Heise, J.; Zand, J.I.; Kippen, R.M.; Woods, P.M. X-ray Flashes and X-ray Rich Gamma Ray Bursts. In Proceedings of the Gamma-Ray Bursts in the Afterglow Era, Rome, Italy, 17–20 October 2000; Costa, E., Frontera, F., Hjorth, J., Eds.; p. 16. [Google Scholar] [CrossRef]
- Yamazaki, R.; Ioka, K.; Nakamura, T. X-ray Flashes from Off-Axis Gamma-ray Bursts. Astrophys. J. 2002, 571, L31–L35. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Gehrels, N.; Sarazin, C.L.; O’Brien, P.T.; Zhang, B.; Barbier, L.; Barthelmy, S.D.; Blustin, A.; Burrows, D.N.; Cannizzo, J.; Cummings, J.R.; et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature 2005, 437, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.S.; Prochaska, J.X.; Pooley, D.; Blake, C.H.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; et al. Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b. Astrophys. J. 2006, 638, 354–368. [Google Scholar] [CrossRef]
- Barthelmy, S.D.; Chincarini, G.; Burrows, D.N.; Gehrels, N.; Covino, S.; Moretti, A.; Romano, P.; O’Brien, P.T.; Sarazin, C.L.; Kouveliotou, C.; et al. An origin for short γ-ray bursts unassociated with current star formation. Nature 2005, 438, 994–996. [Google Scholar] [CrossRef]
- Evans, P.A.; Beardmore, A.P.; Page, K.L.; Osborne, J.P.; O’Brien, P.T.; Willingale, R.; Starling, R.L.C.; Burrows, D.N.; Godet, O.; Vetere, L.; et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 2009, 397, 1177–1201. [Google Scholar] [CrossRef]
- O’Brien, P.T.; Willingale, R.; Osborne, J.; Goad, M.R.; Page, K.L.; Vaughan, S.; Rol, E.; Beardmore, A.; Godet, O.; Hurkett, C.P.; et al. The Early X-Ray Emission from GRBs. Astrophys. J. 2006, 647, 1213–1237. [Google Scholar] [CrossRef]
- Tagliaferri, G.; Goad, M.; Chincarini, G.; Moretti, A.; Campana, S.; Burrows, D.N.; Perri, M.; Barthelmy, S.D.; Gehrels, N.; Krimm, H.; et al. An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts. Nature 2005, 436, 985–988. [Google Scholar] [CrossRef]
- Barthelmy, S.D.; Cannizzo, J.K.; Gehrels, N.; Cusumano, G.; Mangano, V.; O’Brien, P.T.; Vaughan, S.; Zhang, B.; Burrows, D.N.; Campana, S.; et al. Discovery of an Afterglow Extension of the Prompt Phase of Two Gamma-Ray Bursts Observed by Swift. Astrophys. J. 2005, 635, L133–L136. [Google Scholar] [CrossRef]
- Campana, S.; Antonelli, L.A.; Chincarini, G.; Covino, S.; Cusumano, G.; Malesani, D.; Mangano, V.; Moretti, A.; Pagani, C.; Romano, P.; et al. Swift Observations of GRB 050128: The Early X-ray Afterglow. Astrophys. J. 2005, 625, L23–L26. [Google Scholar] [CrossRef]
- Vaughan, S.; Goad, M.R.; Beardmore, A.P.; O’Brien, P.T.; Osborne, J.P.; Page, K.L.; Barthelmy, S.D.; Burrows, D.N.; Campana, S.; Cannizzo, J.K.; et al. Swift Observations of the X-ray-Bright GRB 050315. Astrophys. J. 2006, 638, 920–929. [Google Scholar] [CrossRef]
- Burrows, D.N.; Romano, P.; Falcone, A.; Kobayashi, S.; Zhang, B.; Moretti, A.; O’Brien, P.T.; Goad, M.R.; Campana, S.; Page, K.L.; et al. Bright X-ray Flares in Gamma-Ray Burst Afterglows. Science 2005, 309, 1833–1835. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.; Campana, S.; Chincarini, G.; Cummings, J.; Cusumano, G.; Holland, S.T.; Mangano, V.; Mineo, T.; Page, K.L.; Pal’Shin, V.; et al. Panchromatic study of GRB 060124: From precursor to afterglow. Astron. Astrophys. 2006, 456, 917–927. [Google Scholar] [CrossRef]
- Falcone, A.D.; Burrows, D.N.; Lazzati, D.; Campana, S.; Kobayashi, S.; Zhang, B.; Mészáros, P.; Page, K.L.; Kennea, J.A.; Romano, P.; et al. The Giant X-ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity. Astrophys. J. 2006, 641, 1010–1017. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, Y.Z.; Dyks, J.; Kobayashi, S.; Mészáros, P.; Burrows, D.N.; Nousek, J.A.; Gehrels, N. Physical Processes Shaping Gamma-Ray Burst X-ray Afterglow Light Curves: Theoretical Implications from the Swift X-ray Telescope Observations. Astrophys. J. 2006, 642, 354–370. [Google Scholar] [CrossRef]
- Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.L.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; et al. Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data. Astrophys. J. 2006, 642, 389–400. [Google Scholar] [CrossRef]
- Panaitescu, A.; Mészáros, P.; Burrows, D.; Nousek, J.; Gehrels, N.; O’Brien, P.; Willingale, R. Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications. Mon. Not. R. Astron. Soc. 2006, 369, 2059–2064. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. Astrophys. J. 2001, 552, L35–L38. [Google Scholar] [CrossRef]
- King, A.; O’Brien, P.T.; Goad, M.R.; Osborne, J.; Olsson, E.; Page, K. Gamma-Ray Bursts: Restarting the Engine. Astrophys. J. 2005, 630, L113–L115. [Google Scholar] [CrossRef]
- Perna, R.; Armitage, P.J.; Zhang, B. Flares in Long and Short Gamma-Ray Bursts: A Common Origin in a Hyperaccreting Accretion Disk. Astrophys. J. 2006, 636, L29–L32. [Google Scholar] [CrossRef]
- Dai, Z.G.; Wang, X.Y.; Wu, X.F.; Zhang, B. X-ray Flares from Postmerger Millisecond Pulsars. Science 2006, 311, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 2008, 385, 1455–1460. [Google Scholar] [CrossRef]
- Liang, E.; Zhang, B.; Virgili, F.; Dai, Z.G. Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. Astrophys. J. 2007, 662, 1111–1118. [Google Scholar] [CrossRef]
- Totani, T.; Kawai, N.; Kosugi, G.; Aoki, K.; Yamada, T.; Iye, M.; Ohta, K.; Hattori, T. Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3*. Publ. Astron. Soc. Jpn. 2006, 58, 485–498. [Google Scholar] [CrossRef]
- Cusumano, G.; Mangano, V.; Chincarini, G.; Panaitescu, A.; Burrows, D.N.; La Parola, V.; Sakamoto, T.; Campana, S.; Mineo, T.; Tagliaferri, G.; et al. GRB 050904: The oldest cosmic explosion ever observed in the Universe. In Proceedings of the Gamma-Ray Bursts in the Swift Era: Sixteenth Maryland Astrophysics Conference, Washington, DC, USA, 29 November–2 December 2005; American Institute of Physics Conference Series. Holt, S.S., Gehrels, N., Nousek, J.A., Eds.; Volume 836, pp. 564–569. [Google Scholar] [CrossRef]
- Greiner, J.; Krühler, T.; Fynbo, J.P.U.; Rossi, A.; Schwarz, R.; Klose, S.; Savaglio, S.; Tanvir, N.R.; McBreen, S.; Totani, T.; et al. GRB 080913 at Redshift 6.7. Astrophys. J. 2009, 693, 1610–1620. [Google Scholar] [CrossRef]
- Tanvir, N.R.; Fox, D.B.; Levan, A.J.; Berger, E.; Wiersema, K.; Fynbo, J.P.U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J.S.; et al. A γ-ray burst at a redshift of z∼8.2. Nature 2009, 461, 1254–1257. [Google Scholar] [CrossRef]
- Salvaterra, R.; Della Valle, M.; Campana, S.; Chincarini, G.; Covino, S.; D’Avanzo, P.; Fernández-Soto, A.; Guidorzi, C.; Mannucci, F.; Margutti, R.; et al. GRB090423 at a redshift of z∼8.1. Nature 2009, 461, 1258–1260. [Google Scholar] [CrossRef]
- Cucchiara, A.; Levan, A.J.; Fox, D.B.; Tanvir, N.R.; Ukwatta, T.N.; Berger, E.; Krühler, T.; Küpcü Yoldaş, A.; Wu, X.F.; Toma, K.; et al. A Photometric Redshift of z∼9.4 for GRB 090429B. Astrophys. J. 2011, 736, 7. [Google Scholar] [CrossRef]
- Gehrels, N.; Norris, J.P.; Barthelmy, S.D.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C.B.; Mészáros, P.; Nakar, E.; Nousek, J.A.; et al. A new γ-ray burst classification scheme from GRB060614. Nature 2006, 444, 1044–1046. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Liang, E.W.; Gehrels, N.; Burrows, D.N.; Mészáros, P. Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614. Astrophys. J. 2007, 655, L25–L28. [Google Scholar] [CrossRef]
- Levesque, E.M.; Kewley, L.J.; Berger, E.; Zahid, H.J. The Host Galaxies of Gamma-ray Bursts. II. A Mass-metallicity Relation for Long-duration Gamma-ray Burst Host Galaxies. Astron. J. 2010, 140, 1557–1566. [Google Scholar] [CrossRef]
- Campana, S.; Mangano, V.; Blustin, A.J.; Brown, P.; Burrows, D.N.; Chincarini, G.; Cummings, J.R.; Cusumano, G.; Della Valle, M.; Malesani, D.; et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 2006, 442, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Racusin, J.L.; Karpov, S.V.; Sokolowski, M.; Granot, J.; Wu, X.F.; Pal’Shin, V.; Covino, S.; van der Horst, A.J.; Oates, S.R.; Schady, P.; et al. Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 2008, 455, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Levan, A.J.; Tanvir, N.R.; Starling, R.L.C.; Wiersema, K.; Page, K.L.; Perley, D.A.; Schulze, S.; Wynn, G.A.; Chornock, R.; Hjorth, J.; et al. A New Population of Ultra-long Duration Gamma-Ray Bursts. Astrophys. J. 2014, 781, 13. [Google Scholar] [CrossRef]
- Bloom, J.S.; Giannios, D.; Metzger, B.D.; Cenko, S.B.; Perley, D.A.; Butler, N.R.; Tanvir, N.R.; Levan, A.J.; O’Brien, P.T.; Strubbe, L.E.; et al. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science 2011, 333, 203. [Google Scholar] [CrossRef] [PubMed]
- Burrows, D.N.; Kennea, J.A.; Ghisellini, G.; Mangano, V.; Zhang, B.; Page, K.L.; Eracleous, M.; Romano, P.; Sakamoto, T.; Falcone, A.D.; et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 2011, 476, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Levan, A.J.; Butler, N.; Bloom, J.; Tanvir, N.R.; Fruchter, A.S. GRB 110328/Swift J164449.3+573451: Chandra observations. GRB Coord. Netw. 2011, 11886, 1. [Google Scholar]
- Zauderer, B.A.; Berger, E.; Soderberg, A.M.; Loeb, A.; Narayan, R.; Frail, D.A.; Petitpas, G.R.; Brunthaler, A.; Chornock, R.; Carpenter, J.M.; et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 2011, 476, 425–428. [Google Scholar] [CrossRef]
- Kanbach, G.; Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kniffen, D.A.; Hughlock, B.W.; Favale, A.; Hofstadter, R.; Hughes, E.B. The project EGRET (energetic gamma-ray experiment telescope) on NASA’s Gamma-Ray Observatory GRO. Space Sci. Rev. 1989, 49, 69–84. [Google Scholar] [CrossRef]
- Hurley, K.; Dingus, B.L.; Mukherjee, R.; Sreekumar, P.; Kouveliotou, C.; Meegan, C.; Fishman, G.J.; Band, D.; Ford, L.; Bertsch, D.; et al. Detection of a γ-ray burst of very long duration and very high energy. Nature 1994, 372, 652–654. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Preece, R.; Bhat, N.; Fishman, G.J.; Meegan, C.A.; Horack, J.M.; Briggs, M.S.; Paciesas, W.S.; Pendleton, G.N.; Band, D.; et al. BATSE Observations of the Very Intense Gamma-Ray Burst GRB 930131. Astrophys. J. 1994, 422, L59. [Google Scholar] [CrossRef]
- Sommer, M.; Bertsch, D.L.; Dingus, B.L.; Fichtel, C.E.; Fishman, G.J.; Harding, A.K.; Hartman, R.C.; Hunter, S.D.; Hurley, K.; Kanbach, G.; et al. High-Energy Gamma Rays from the Intense 1993 January 31 Gamma-Ray Burst. Astrophys. J. 1994, 422, L63. [Google Scholar] [CrossRef]
- González, M.M.; Dingus, B.L.; Kaneko, Y.; Preece, R.D.; Dermer, C.D.; Briggs, M.S. A γ-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model. Nature 2003, 424, 749–751. [Google Scholar] [CrossRef]
- Tavani, M.; Barbiellini, G.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.W.; Chen, A.W.; Cocco, V.; Costa, E.; et al. The AGILE Mission. Astron. Astrophys. 2009, 502, 995–1013. [Google Scholar] [CrossRef]
- Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Prest, M.; Vallazza, E. The next generation of high-energy gamma-ray detectors for satellites: The AGILE silicon tracker. In Proceedings of the Gamma 2001: Gamma-Ray Astrophysics, Baltimore, MD, USA, 4–6 April 2001; American Institute of Physics Conference Series. Ritz, S., Gehrels, N., Shrader, C.R., Eds.; Volume 587, pp. 754–758. [Google Scholar] [CrossRef]
- Costa, E.; Barbanera, L.; Feroci, M.; Frutti, M.; Lapshov, I.; Martino, B.; Mastropietro, M.; Morelli, E.; Rapisarda, M.; Rubini, A.; et al. Super-agile-The X-ray detector for the gamma-ray mission agile. In Proceedings of the X-ray Astronomy: Stellar Endpoints, AGN, and the Diffuse X-ray Background, Bologna, Italy, 6–10 September 1999; American Institute of Physics Conference Series. White, N.E., Malaguti, G., Palumbo, G.G.C., Eds.; Volume 599, pp. 582–585. [Google Scholar] [CrossRef]
- Parmiggiani, N.; Bulgarelli, A.; Ursi, A.; Addis, A.; Baroncelli, L.; Fioretti, V.; Di Piano, A.; Panebianco, G.; Tavani, M.; Pittori, C.; et al. The AGILE real-time analysis software system to detect short-transient events in the multi-messenger era. Astron. Comput. 2023, 44, 100726. [Google Scholar] [CrossRef]
- Galli, M.; Marisaldi, M.; Fuschino, F.; Labanti, C.; Argan, A.; Barbiellini, G.; Bulgarelli, A.; Cattaneo, P.W.; Colafrancesco, S.; Del Monte, E.; et al. AGILE mini-calorimeter gamma-ray burst catalog. Astron. Astrophys. 2013, 553, A33. [Google Scholar] [CrossRef]
- Ursi, A.; Romani, M.; Verrecchia, F.; Pittori, C.; Tavani, M.; Marisaldi, M.; Galli, M.; Labanti, C.; Parmiggiani, N.; Bulgarelli, A.; et al. The Second AGILE MCAL Gamma-Ray Burst Catalog: 13 yr of Observations. Astrophys. J. 2022, 925, 152. [Google Scholar] [CrossRef]
- Longo, F.; Moretti, E.; Nava, L.; Desiante, R.; Olivo, M.; Del Monte, E.; Rappoldi, A.; Fuschino, F.; Marisaldi, M.; Giuliani, A.; et al. Upper limits on the high-energy emission from gamma-ray bursts observed by AGILE-GRID. Astron. Astrophys. 2012, 547, A95. [Google Scholar] [CrossRef]
- Giuliani, A.; Mereghetti, S.; Fornari, F.; Del Monte, E.; Feroci, M.; Marisaldi, M.; Esposito, P.; Perotti, F.; Tavani, M.; Argan, A.; et al. AGILE detection of delayed gamma-ray emission from GRB 080514B. Astron. Astrophys. 2008, 491, L25–L28. [Google Scholar] [CrossRef]
- Giuliani, A.; Fuschino, F.; Vianello, G.; Marisaldi, M.; Mereghetti, S.; Tavani, M.; Cutini, S.; Barbiellini, G.; Longo, F.; Moretti, E.; et al. AGILE Detection of Delayed Gamma-ray Emission From the Short Gamma-Ray Burst GRB 090510. Astrophys. J. 2010, 708, L84–L88. [Google Scholar] [CrossRef]
- Ackermann, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies. Astrophys. J. 2010, 716, 1178–1190. [Google Scholar] [CrossRef]
- De Pasquale, M.; Schady, P.; Kuin, N.P.M.; Page, M.J.; Curran, P.A.; Zane, S.; Oates, S.R.; Holland, S.T.; Breeveld, A.A.; Hoversten, E.A.; et al. Swift and Fermi Observations of the Early Afterglow of the Short Gamma-Ray Burst 090510. Astrophys. J. 2010, 709, L146–L151. [Google Scholar] [CrossRef]
- Parmiggiani, N.; Bulgarelli, A.; Fioretti, V.; Di Piano, A.; Giuliani, A.; Longo, F.; Verrecchia, F.; Tavani, M.; Beneventano, D.; Macaluso, A. A Deep Learning Method for AGILE-GRID Gamma-Ray Burst Detection. Astrophys. J. 2021, 914, 67. [Google Scholar] [CrossRef]
- Parmiggiani, N.; Bulgarelli, A.; Ursi, A.; Macaluso, A.; Di Piano, A.; Fioretti, V.; Aboudan, A.; Baroncelli, L.; Addis, A.; Tavani, M.; et al. A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System. Astrophys. J. 2023, 945, 106. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Meegan, C.; Lichti, G.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Connaughton, V.; Diehl, R.; Fishman, G.; Greiner, J.; Hoover, A.S.; et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 2009, 702, 791–804. [Google Scholar] [CrossRef]
- von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burns, E.; Cleveland, W.H.; Gibby, M.H.; Giles, M.M.; et al. The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data. Astrophys. J. 2020, 893, 46. [Google Scholar] [CrossRef]
- Ajello, M.; Arimoto, M.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bhat, P.N.; Bissaldi, E.; Blandford, R.D.; et al. A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. Astrophys. J. 2019, 878, 52. [Google Scholar] [CrossRef]
- Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A. GeV emission from gamma-ray bursts: A radiative fireball? Mon. Not. R. Astron. Soc. 2010, 403, 926–937. [Google Scholar] [CrossRef]
- Nava, L.; Vianello, G.; Omodei, N.; Ghisellini, G.; Ghirlanda, G.; Celotti, A.; Longo, F.; Desiante, R.; Barniol Duran, R. Clustering of LAT light curves: A clue to the origin of high-energy emission in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2014, 443, 3578–3585. [Google Scholar] [CrossRef]
- Kumar, P.; Barniol Duran, R. On the generation of high-energy photons detected by the Fermi Satellite from gamma-ray bursts. Mon. Not. R. Astron. Soc. 2009, 400, L75–L79. [Google Scholar] [CrossRef]
- Kumar, P.; Barniol Duran, R. External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. Mon. Not. R. Astron. Soc. 2010, 409, 226–236. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 2009, 462, 331–334. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef]
- Nava, L.; Desiante, R.; Longo, F.; Celotti, A.; Omodei, N.; Vianello, G.; Bissaldi, E.; Piran, T. Constraints on the bulk Lorentz factor of gamma-ray burst jets from Fermi/LAT upper limits. Mon. Not. R. Astron. Soc. 2017, 465, 811–819. [Google Scholar] [CrossRef]
- Razzaque, S.; Dermer, C.D.; Finke, J.D. The Stellar Contribution to the Extragalactic Background Light and Absorption of High-Energy Gamma Rays. Astrophys. J. 2009, 697, 483–492. [Google Scholar] [CrossRef]
- Zhang, B.; Pe’er, A. Evidence of an Initially Magnetically Dominated Outflow in GRB 080916C. Astrophys. J. 2009, 700, L65–L68. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, H. The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts. Astrophys. J. 2011, 726, 90. [Google Scholar] [CrossRef]
- Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R.S.; Thompson, D.J.; Bhat, P.N.; Gehrels, N.; Gonzalez, M.M.; et al. Toward a Better Understanding of the GRB Phenomenon: A New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation. Astrophys. J. 2015, 807, 148. [Google Scholar] [CrossRef]
- Ryde, F.; Axelsson, M.; Zhang, B.B.; McGlynn, S.; Pe’er, A.; Lundman, C.; Larsson, S.; Battelino, M.; Zhang, B.; Bissaldi, E.; et al. Identification and Properties of the Photospheric Emission in GRB090902B. Astrophys. J. 2010, 709, L172–L177. [Google Scholar] [CrossRef]
- Guiriec, S.; Connaughton, V.; Briggs, M.S.; Burgess, M.; Ryde, F.; Daigne, F.; Mészáros, P.; Goldstein, A.; McEnery, J.; Omodei, N.; et al. Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B. Astrophys. J. 2011, 727, L33. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellardi, F.; et al. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 2010, 82, 092004. [Google Scholar] [CrossRef]
- Oganesyan, G.; Nava, L.; Ghirlanda, G.; Melandri, A.; Celotti, A. Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astron. Astrophys. 2019, 628, A59. [Google Scholar] [CrossRef]
- Oganesyan, G.; Nava, L.; Ghirlanda, G.; Celotti, A. Characterization of gamma-ray burst prompt emission spectra down to soft X-rays. Astron. Astrophys. 2018, 616, A138. [Google Scholar] [CrossRef]
- Waxman, E. Cosmological Gamma-Ray Bursts and the Highest Energy Cosmic Rays. Phys. Rev. Lett. 1995, 75, 386–389. [Google Scholar] [CrossRef]
- Vietri, M. The Acceleration of Ultra–High-Energy Cosmic Rays in Gamma-Ray Bursts. Astrophys. J. 1995, 453, 883. [Google Scholar] [CrossRef]
- Milgrom, M.; Usov, V. Possible Association of Ultra–High-Energy Cosmic-Ray Events with Strong Gamma-Ray Bursts. Astrophys. J. 1995, 449, L37. [Google Scholar] [CrossRef]
- Waxman, E.; Bahcall, J. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef]
- Murase, K.; Ioka, K.; Nagataki, S.; Nakamura, T. High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multimessenger astronomy. Phys. Rev. D 2008, 78, 023005. [Google Scholar] [CrossRef]
- Zhang, B.; Kumar, P. Model-Dependent High-Energy Neutrino Flux from Gamma-Ray Bursts. Phys. Rev. Lett. 2013, 110, 121101. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophys. J. 2017, 843, 112. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for high-energy neutrinos from bright GRBs with ANTARES. Mon. Not. R. Astron. Soc. 2017, 469, 906–915. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data. Mon. Not. R. Astron. Soc. 2021, 500, 5614–5628. [Google Scholar] [CrossRef]
- Taylor, J.H.; Weisberg, J.M. Further Experimental Tests of Relativistic Gravity Using the Binary Pulsar PSR 1913+16. Astrophys. J. 1989, 345, 434. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [Google Scholar] [CrossRef]
- Coulter, D.A.; Foley, R.J.; Kilpatrick, C.D.; Drout, M.R.; Piro, A.L.; Shappee, B.J.; Siebert, M.R.; Simon, J.D.; Ulloa, N.; Kasen, D.; et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 2017, 358, 1556–1558. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.A.; Cenko, S.B.; Kennea, J.A.; Emery, S.W.K.; Kuin, N.P.M.; Korobkin, O.; Wollaeger, R.T.; Fryer, C.L.; Madsen, K.K.; Harrison, F.A.; et al. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova. Science 2017, 358, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Shappee, B.J.; Simon, J.D.; Drout, M.R.; Piro, A.L.; Morrell, N.; Prieto, J.L.; Kasen, D.; Holoien, T.W.S.; Kollmeier, J.A.; Kelson, D.D.; et al. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science 2017, 358, 1574–1578. [Google Scholar] [CrossRef]
- Smartt, S.J.; Chen, T.W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef]
- Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B.D.; Elias, J.; Briceño, C.; Alexander, K.D.; Blanchard, P.K.; Chornock, R.; Cowperthwaite, P.S.; et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. Astrophys. J. 2017, 848, L18. [Google Scholar] [CrossRef]
- Chornock, R.; Berger, E.; Kasen, D.; Cowperthwaite, P.S.; Nicholl, M.; Villar, V.A.; Alexander, K.D.; Blanchard, P.K.; Eftekhari, T.; Fong, W.; et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. Astrophys. J. 2017, 848, L19. [Google Scholar] [CrossRef]
- Kulkarni, S.R. Modeling Supernova-like Explosions Associated with Gamma-ray Bursts with Short Durations. arXiv 2005, arXiv:astro-ph/0510256. [Google Scholar] [CrossRef]
- Li, L.X.; Paczyński, B. Transient Events from Neutron Star Mergers. Astrophys. J. 1998, 507, L59–L62. [Google Scholar] [CrossRef]
- Piran, T.; Nakar, E.; Rosswog, S. The electromagnetic signals of compact binary mergers. Mon. Not. R. Astron. Soc. 2013, 430, 2121–2136. [Google Scholar] [CrossRef]
- Kobayashi, S.; Mészáros, P. Gravitational Radiation from Gamma-Ray Burst Progenitors. Astrophys. J. 2003, 589, 861–870. [Google Scholar] [CrossRef]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, P.; Rees, M.J.; Papathanassiou, H. Spectral Properties of Blast-Wave Models of Gamma-Ray Burst Sources. Astrophys. J. 1994, 432, 181. [Google Scholar] [CrossRef]
- Mészáros, P.; Razzaque, S.; Zhang, B. GeV-TeV emission from γ-ray bursts. New A Rev. 2004, 48, 445–451. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Piran, T. High-energy γ-ray emission from gamma-ray bursts—Before GLAST. Front. Phys. China 2008, 3, 306–330. [Google Scholar] [CrossRef]
- Inoue, S.; Granot, J.; O’Brien, P.T.; Asano, K.; Bouvier, A.; Carosi, A.; Connaughton, V.; Garczarczyk, M.; Gilmore, R.; Hinton, J.; et al. Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astropart. Phys. 2013, 43, 252–275. [Google Scholar] [CrossRef]
- Nava, L. High-energy emission from gamma-ray bursts. Int. J. Mod. Phys. D 2018, 27, 1842003. [Google Scholar] [CrossRef]
- Padilla, L.; Funk, B.; Krawczynski, H.; Contreras, J.L.; Moralejo, A.; Aharonian, F.; Akhperjanian, A.G.; Barrio, J.A.; Beteta, J.G.; Cortina, J.; et al. Search for gamma-ray bursts above 20 TeV with the HEGRA AIROBICC Cherenkov array. Astron. Astrophys. 1998, 337, 43–50. [Google Scholar]
- Atkins, R.; Benbow, W.; Berley, D.; Chen, M.L.; Coyne, D.G.; Dingus, B.L.; Dorfan, D.E.; Ellsworth, R.W.; Evans, D.; Falcone, A.; et al. Evidence for TEV Emission from GRB 970417A. Astrophys. J. 2000, 533, L119–L122. [Google Scholar] [CrossRef]
- Atkins, R.; Benbow, W.; Berley, D.; Blaufuss, E.; Bussons, J.; Coyne, D.G.; Delay, R.S.; De Young, T.; Dingus, B.L.; Dorfan, D.E.; et al. Observation of TeV Gamma Rays from the Crab Nebula with Milagro Using a New Background Rejection Technique. Astrophys. J. 2003, 595, 803–811. [Google Scholar] [CrossRef]
- Lund, N. The WATCH gamma-burst detector for EURECA-1. In Proceedings of the X-ray Instrumentation in Astronomy, Cannes, France, 2–4 December 1985; p. 55. [Google Scholar]
- Castro-Tirado, A.J.; Brandt, S.; Lund, N.; Guziy, S.S. Optical Follow-Up of Gamma-ray Bursts Observed by WATCH. In Proceedings of the Gamma-Ray Bursts, Huntsville, AL, USA, 20–22 October 1993; American Institute of Physics Conference Series. Fishman, G.J., Ed.; Volume 307, p. 404. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Asensio, M.; Baixeras, C.; Barrio, J.A.; Bartelt, M.; Bartko, H.; et al. Flux Upper Limit on Gamma-Ray Emission by GRB 050713a from MAGIC Telescope Observations. Astrophys. J. 2006, 641, L9–L12. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; Berger, K.; et al. MAGIC upper limits on the GRB 090102 afterglow. Mon. Not. R. Astron. Soc. 2014, 437, 3103–3111. [Google Scholar] [CrossRef]
- Abramowski, A. et al. [H. E. S. S. Collaboration] Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S. Astron. Astrophys. 2014, 565, A16. [Google Scholar] [CrossRef]
- Aliu, E.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Biteau, J.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. Constraints on Very High Energy Emission from GRB 130427A. Astrophys. J. 2014, 795, L3. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Barber, A.S.; Baughman, B.M.; Bautista-Elivar, N.; et al. Search for Gamma-Rays from the Unusually Bright GRB 130427A with the HAWC Gamma-Ray Observatory. Astrophys. J. 2015, 800, 78. [Google Scholar] [CrossRef]
- Mirzoyan, R. First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C. Astron. Telegr. 2019, 12390, 1. [Google Scholar]
- Acciari, V.A. et al. [MAGIC Collaboration] Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 2019, 575, 464–467. [Google Scholar] [CrossRef]
- Abdalla, H. et al. [H. E. S. S. Collaboration] Revealing X-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar] [CrossRef]
- Blanch, O.; Gaug, M.; Noda, K.; Berti, A.; Moretti, E.; Miceli, D.; Gliwny, P.; Ubach, S.; Schleicher, B.; Cerruti, M.; et al. MAGIC observations of GRB 201015A: Hint of very high energy gamma-ray signal. GRB Coord. Netw. 2020, 28659, 1. [Google Scholar]
- Blanch, O. GRB 201216C: MAGIC detection in very high energy gamma rays. Astron. Telegr. 2020, 14275, 1. [Google Scholar]
- Blanch, O.; Longo, F.; Berti, A.; Fukami, S.; Suda, Y.; Loporchio, S.; Micanovic, S.; Green, J.G.; Pinter, V.; Takahashi, M.; et al. GRB 201216C: MAGIC detection in very high energy gamma rays. GRB Coord. Netw. 2020, 29075, 1. [Google Scholar]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J.A.; et al. MAGIC Observations of the Nearby Short Gamma-Ray Burst GRB 160821B. Astrophys. J. 2021, 908, 90. [Google Scholar] [CrossRef]
- Cao, Z. A future project at tibet: The large high altitude air shower observatory (LHAASO). Chin. Phys. C 2010, 34, 249–252. [Google Scholar] [CrossRef]
- Cao, Z.; della Volpe, D.; Liu, S.; Bi, X.; Chen, Y.; D’Ettorre Piazzoli, B.; Feng, L.; Jia, H.; Li, Z.; Ma, X.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science Book (2021 Edition). arXiv 2019, arXiv:1905.02773. [Google Scholar] [CrossRef]
- Cao, Z. et al. [LHAASO Collaboration] A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science 2023, 380, 1390–1396. [Google Scholar] [CrossRef]
- Burns, E.; Svinkin, D.; Fenimore, E.; Kann, D.A.; Agüí Fernández, J.F.; Frederiks, D.; Hamburg, R.; Lesage, S.; Temiraev, Y.; Tsvetkova, A.; et al. GRB 221009A: The Boat. Astrophys. J. 2023, 946, L31. [Google Scholar] [CrossRef]
- An, Z.H.; Antier, S.; Bi, X.Z.; Bu, Q.C.; Cai, C.; Cao, X.L.; Camisasca, A.E.; Chang, Z.; Chen, G.; Chen, L.; et al. Insight-HXMT and GECAM-C observations of the brightest-of-all-time GRB 221009A. arXiv 2023, arXiv:2303.01203. [Google Scholar] [CrossRef]
- Frederiks, D.; Svinkin, D.; Lysenko, A.L.; Molkov, S.; Tsvetkova, A.; Ulanov, M.; Ridnaia, A.; Lutovinov, A.A.; Lapshov, I.; Tkachenko, A.; et al. Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations. Astrophys. J. 2023, 949, L7. [Google Scholar] [CrossRef]
- Lesage, S.; Veres, P.; Briggs, M.S.; Goldstein, A.; Kocevski, D.; Burns, E.; Wilson-Hodge, C.A.; Bhat, P.N.; Huppenkothen, D.; Fryer, C.L.; et al. Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow. Astrophys. J. 2023, 952, L42. [Google Scholar] [CrossRef]
- Williams, M.A.; Kennea, J.A.; Dichiara, S.; Kobayashi, K.; Iwakiri, W.B.; Beardmore, A.P.; Evans, P.A.; Heinz, S.; Lien, A.; Oates, S.R.; et al. GRB 221009A: Discovery of an Exceptionally Rare Nearby and Energetic Gamma-Ray Burst. Astrophys. J. 2023, 946, L24. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.; Zhang, L.L.; Dai, Z.G. The Possibility of Modeling the Very High Energy Afterglow of GRB 221009A in a Wind Environment. Astrophys. J. 2023, 947, 53. [Google Scholar] [CrossRef]
- O’Connor, B.; Troja, E.; Ryan, G.; Beniamini, P.; van Eerten, H.; Granot, J.; Dichiara, S.; Ricci, R.; Lipunov, V.; Gillanders, J.H.; et al. A structured jet explains the extreme GRB 221009A. Sci. Adv. 2023, 9, eadi1405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.T.; Murase, K.; Ioka, K.; Song, D.; Yuan, C.; Mészáros, P. External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A. Astrophys. J. 2023, 947, L14. [Google Scholar] [CrossRef]
- Sato, Y.; Murase, K.; Ohira, Y.; Yamazaki, R. Two-component jet model for multiwavelength afterglow emission of the extremely energetic burst GRB 221009A. Mon. Not. R. Astron. Soc. 2023, 522, L56–L60. [Google Scholar] [CrossRef]
- Das, S.; Razzaque, S. Ultrahigh-energy cosmic-ray signature in GRB 221009A. Astron. Astrophys. 2023, 670, L12. [Google Scholar] [CrossRef]
- Alves Batista, R. GRB 221009A: A potential source of ultra-high-energy cosmic rays. arXiv 2022, arXiv:2210.12855. [Google Scholar] [CrossRef]
- de Ugarte Postigo, A.; Izzo, L.; Pugliese, G.; Xu, D.; Schneider, B.; Fynbo, J.P.U.; Tanvir, N.R.; Malesani, D.B.; Saccardi, A.; Kann, D.A.; et al. GRB 221009A: Redshift from X-shooter/VLT. GRB Coord. Netw. 2022, 32648, 1. [Google Scholar]
- Li, H.; Ma, B.Q. Lorentz invariance violation induced threshold anomaly versus very-high energy cosmic photon emission from GRB 221009A. Astropart. Phys. 2023, 148, 102831. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S. Possible Evidence for Lorentz Invariance Violation in Gamma-Ray Burst 221009A. Astrophys. J. 2023, 942, L21. [Google Scholar] [CrossRef]
- Galanti, G.; Nava, L.; Roncadelli, M.; Tavecchio, F.; Bonnoli, G. Observability of the very-high-energy emission from GRB 221009A. arXiv 2022, arXiv:2210.05659. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Takahashi, F.; Yamada, M.; Yin, W. Axion dark matter from first-order phase transition, and very high energy photons from GRB 221009A. Phys. Lett. B 2023, 839, 137824. [Google Scholar] [CrossRef]
- Murase, K.; Mukhopadhyay, M.; Kheirandish, A.; Kimura, S.S.; Fang, K. Neutrinos from the Brightest Gamma-Ray Burst? Astrophys. J. 2022, 941, L10. [Google Scholar] [CrossRef]
- Ai, S.; Gao, H. Model Constraints Based on the IceCube Neutrino Nondetection of GRB 221009A. Astrophys. J. 2023, 944, 115. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aggarwal, N.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; et al. Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. Astrophys. J. 2023, 946, L26. [Google Scholar] [CrossRef]
- Edvige Ravasio, M.; Sharan Salafia, O.; Oganesyan, G.; Mei, A.; Ghirlanda, G.; Ascenzi, S.; Banerjee, B.; Macera, S.; Branchesi, M.; Jonker, P.G.; et al. A bright megaelectronvolt emission line in γ-ray burst GRB 221009A. arXiv 2023, arXiv:2303.16223. [Google Scholar] [CrossRef]
- Fiore, F.; Burderi, L.; Lavagna, M.; Bertacin, R.; Evangelista, Y.; Campana, R.; Fuschino, F.; Lunghi, P.; Monge, A.; Negri, B.; et al. The HERMES-technologic and scientific pathfinder. arXiv 2020, arXiv:2101.03078. [Google Scholar] [CrossRef]
- Paul, J.; Wei, J.; Basa, S.; Zhang, S.N. The Chinese-French SVOM mission for gamma-ray burst studies. Comptes Rendus Phys. 2011, 12, 298–308. [Google Scholar] [CrossRef]
- Wei, J.; Cordier, B.; Antier, S.; Antilogus, P.; Atteia, J.L.; Bajat, A.; Basa, S.; Beckmann, V.; Bernardini, M.G.; Boissier, S.; et al. The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities—Scientific prospects of the SVOM mission. arXiv 2016, arXiv:1610.06892. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, G.; et al. The THESEUS space mission concept: Science case, design and expected performances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar] [CrossRef]
- Stratta, G.; Ciolfi, R.; Amati, L.; Bozzo, E.; Ghirlanda, G.; Maiorano, E.; Nicastro, L.; Rossi, A.; Vinciguerra, S.; Frontera, F.; et al. THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Adv. Space Res. 2018, 62, 662–682. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.T.; Götz, D.; Bozzo, E.; Santangelo, A.; Tanvir, N.; Frontera, F.; Mereghetti, S.; Osborne, J.P.; Blain, A.; et al. The THESEUS space mission: Science goals, requirements and mission concept. Exp. Astron. 2021, 52, 183–218. [Google Scholar] [CrossRef]
- Rahin, R.; Salh, J.; Tarem, S.; Behar, E. GALI (Gamma-ray Burst Localizing Instrument) A New GRB Detector Concept. AAS/High Energy Astrophys. Div. 2022, 54, 111.12. [Google Scholar]
- Yuan, W.M. Special Topic of Einstein Probe: Exploring the Dynamic X-ray Universe. Sci. Sin. Phys. Mech. Astron. 2018, 48, 039501. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, X.; Li, Z.; Wang, C.; Zhang, C.; Sun, S. Detection system of the lobster eye telescope with large field of view. Appl. Opt. 2022, 61, 8813. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cui, W.; Han, D.; Wang, J.; Yang, Y.; Wang, Y.; Li, W.; Ma, J.; Xu, Y.; Lu, F.; et al. Status of the follow-up x-ray telescope onboard the Einstein Probe satellite. Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf. Ser. 2020, 11444, 114445B. [Google Scholar] [CrossRef]
- Racusin, J.; Perkins, J.S.; Briggs, M.S.; de Nolfo, G.; Krizmanic, J.; Caputo, R.; McEnery, J.E.; Shawhan, P.; Morris, D.; Connaughton, V.; et al. BurstCube: A CubeSat for Gravitational Wave Counterparts. arXiv 2017, arXiv:1708.09292. [Google Scholar] [CrossRef]
- Kocevski, D. The StarBurst Multimessenger Pioneer. AAS/High Energy Astrophys. Div. 2023, 55, 115.23. [Google Scholar]
- Hui, C.M.; Briggs, M.S.; Goldstein, A.; Jenke, P.; Kocevski, D.; Wilson-Hodge, C.A. MoonBEAM: A Beyond-LEO Gamma-Ray Burst Detector for Gravitational-Wave Astronomy. In Proceedings of the Deep Space Gateway Concept Science Workshop, Denver, CO, USA, 27 February–1 March 2018; LPI Contributions. LPI Editorial Board, Ed.; Volume 2063, p. 3060. [Google Scholar]
- Fletcher, C.; Hui, C.M.; Goldstein, A.; The MoonBEAM Team. The Scientific Performance of the MoonBurst Energetics All-sky Monitor(MoonBEAM). arXiv 2023, arXiv:2308.16293. [Google Scholar] [CrossRef]
- McConnell, M.L.; Baring, M.G.; Bloser, P.F.; Briggs, M.S.; Connaughton, V.; Dwyer, J.; Gaskin, J.; Grove, J.E.; Gunji, S.; Hartmann, D.; et al. LEAP—A Large Area GRB Polarimeter for the ISS. AAS/High Energy Astrophys. Div. 2017, 16, 103.20. [Google Scholar]
- Gaskin, J.; Baring, M.; Bloser, P.; Briggs, M.; Dwyer, J.; Ertley, C.; Fletcher, G.; Galloway, P.; Gelmis, K.; Goldstein, A.; et al. The LEAP Gamma-Ray Burst Polarimeter: An Overview. Am. Astron. Soc. Meet. Abstr. 2022, 54, 127.01. [Google Scholar]
- Zhang, B. The Physics of Gamma-Ray Bursts; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigliano, A.A.; Longo, F. Gamma-ray Bursts: 50 Years and Counting! Universe 2024, 10, 57. https://doi.org/10.3390/universe10020057
Vigliano AA, Longo F. Gamma-ray Bursts: 50 Years and Counting! Universe. 2024; 10(2):57. https://doi.org/10.3390/universe10020057
Chicago/Turabian StyleVigliano, Alessandro Armando, and Francesco Longo. 2024. "Gamma-ray Bursts: 50 Years and Counting!" Universe 10, no. 2: 57. https://doi.org/10.3390/universe10020057
APA StyleVigliano, A. A., & Longo, F. (2024). Gamma-ray Bursts: 50 Years and Counting! Universe, 10(2), 57. https://doi.org/10.3390/universe10020057