Particle Production in pA Collisions at Mid-Rapidity in the Color Glass Condensate
Abstract
:1. Introduction
2. Double-Inclusive Gluon Production in Dilute–Dense Scattering at Mid-Rapidity
- term: This contribution corresponds to the uncorrelated production, which is simply the square of the single inclusive spectrum.
- -first term: The first term in Equation (20) is proportional to
- -second term: The second term in Equation (20) is proportional to
- -first term: The first term in Equation (21) is proportional to
- -second term: The second term in Equation (21) is proportional to
3. A Specific Model for Double-Inclusive Gluon Production in Dilute–Dense Scattering
4. Two-Particle Azimuthal Harmonics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | Throughout the manuscript, we use and as the shorthand notation for coordinate and momentum space integrals in the transverse direction. |
3 | Since we do not assume translational invariance of the projectile wave function, the function depends both on the difference and the center of mass coordinate . |
4 | Note that, in the eikonal approximation employed in this work, the results are independent of the energy of the collision and of the rapidity of the produced gluons. |
5 | The correlations that we computed are those between the final-state gluons before hadronization and neglecting any kind of final-state effects between them or with additional partons produced in the collision, or among final-state hadrons. |
6 | The sensitivity of azimuthal harmonics to the value of the effective mass was explored in [65] within the glasma graph approximation including non-eikonal corrections. |
References
- Khachatryan, V. et al. [CMS Collaboration] Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. J. High Energy Phys. 2010, 2010, 91. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration] Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at =5.02 and 13 TeV and p+Pb collisions at =5.02 TeV with the ATLAS detector. Phys. Rev. C 2017, 96, 024908. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Measurement of long-range near-side two-particle angular correlations in pp collisions at =13 TeV. Phys. Rev. Lett. 2016, 116, 172302. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Amor Dos Santos, S.P.; Anjos, N.; Araque, J.P.; Cantrill, R.; Carvalho, J.; Conde Muiño, P.; Da Cunha Sargedas De Sousa, M.J.; Fiolhais, M.; Galhardo, B.; et al. Observation of Long-Range Elliptic Azimuthal Anisotropies in =13 and 2.76 TeV pp Collisions with the ATLAS Detector. Phys. Rev. Lett. 2016, 116, 172301. [Google Scholar]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Br stetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, 765, 193–220. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Lead Collisions at the LHC. Phys. Lett. B 2013, 718, 795–814. [Google Scholar] [CrossRef]
- Abelev, B. Long-range angular correlations on the near and away side in p-Pb collisions at =5.02 TeV. Phys. Lett. B 2013, 719, 29–41. [Google Scholar] [CrossRef]
- Aad, G. Observation of Associated Near-Side and Away-Side Long-Range Correlations in =5.02 TeV Proton-Lead Collisions with the ATLAS Detector. Phys. Rev. Lett. 2013, 110, 182302. [Google Scholar] [CrossRef]
- Beteta, C.A.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Measurements of long-range near-side angular correlations in =5TeV proton-lead collisions in the forward region. Phys. Lett. B 2016, 762, 473–483. [Google Scholar]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Busza, W.; Carroll, A.; et al. High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at s(NN)**1/2 = 200 GeV. Phys. Rev. Lett. 2010, 104, 062301. [Google Scholar] [CrossRef]
- Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. C 2009, 80, 064912. [Google Scholar] [CrossRef]
- Adare, A.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta’ani, H.; Alexander, J.; Andrews, K.R.; Angerami, A.; et al. Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d+Au collisions at = 200 GeV. Phys. Rev. Lett. 2015, 114, 192301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; et al. Long-range pseudorapidity dihadron correlations in d+Au collisions at =200 GeV. Phys. Lett. B 2015, 747, 265–271. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta’ani, H.; et al. Measurements of elliptic and triangular flow in high-multiplicity 3He+Au collisions at =200 GeV. Phys. Rev. Lett. 2015, 115, 142301. [Google Scholar] [CrossRef]
- Jeon, S.; Heinz, U. Introduction to Hydrodynamics. Int. J. Mod. Phys. E 2015, 24, 1530010. [Google Scholar] [CrossRef]
- Romatschke, P.; Romatschke, U. Relativistic Fluid Dynamics In and Out of Equilibrium; Cambridge University Press: Cambridge, UK, 2019; ISBN 978-1-108-48368-1/978-1-108-75002-8. [Google Scholar]
- Schenke, B.; Tribedy, P.; Venugopalan, R. Fluctuating Glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 2012, 108, 252301. [Google Scholar] [CrossRef] [PubMed]
- Kurkela, A.; Wiedemann, U.A.; Wu, B. Flow in AA and pA as an interplay of fluid-like and non-fluid like excitations. Eur. Phys. J. C 2019, 79, 965. [Google Scholar] [CrossRef]
- Kovchegov, Y.V.; Levin, E. Quantum Chromodynamics at High Energy; Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (33); Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Gelis, F.; Iancu, E.; Jalilian-Marian, J.; Venugopalan, R. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci. 2010, 60, 463–489. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N. Particle correlations from the initial state. Eur. Phys. J. A 2020, 56, 215. [Google Scholar] [CrossRef]
- Kovner, A.; Lublinsky, M. Angular Correlations in Gluon Production at High Energy. Phys. Rev. D 2011, 83, 034017. [Google Scholar] [CrossRef]
- Kovner, A.; Lublinsky, M. On Angular Correlations and High Energy Evolution. Phys. Rev. D 2011, 84, 094011. [Google Scholar] [CrossRef]
- Kovner, A.; Lublinsky, M. Angular and long range rapidity correlations in particle production at high energy. Int. J. Mod. Phys. E 2013, 22, 1330001. [Google Scholar] [CrossRef]
- Dumitru, A.; McLerran, L.; Skokov, V. Azimuthal asymmetries and the emergence of “collectivity” from multi-particle correlations in high-energy pA collisions. Phys. Lett. B 2015, 743, 134–137. [Google Scholar] [CrossRef]
- Dumitru, A.; Skokov, V. Anisotropy of the semiclassical gluon field of a large nucleus at high energy. Phys. Rev. D 2015, 91, 074006. [Google Scholar] [CrossRef]
- Dumitru, A.; Gelis, F.; McLerran, L.; Venugopalan, R. Glasma flux tubes and the near side ridge phenomenon at RHIC. Nucl. Phys. A 2008, 810, 91–108. [Google Scholar] [CrossRef]
- Armesto, N.; McLerran, L.; Pajares, C. Long Range Forward-Backward Correlations and the Color Glass Condensate. Nucl. Phys. A 2007, 781, 201–208. [Google Scholar] [CrossRef]
- Dumitru, A.; Dusling, K.; Gelis, F.; Jalilian-Marian, J.; Lappi, T.; Venugopalan, R. The Ridge in proton–proton collisions at the LHC. Phys. Lett. B 2011, 697, 21–25. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions. Phys. Rev. Lett. 2012, 108, 262001. [Google Scholar] [CrossRef] [PubMed]
- Dusling, K.; Venugopalan, R. Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC. Phys. Rev. D 2013, 87, 051502. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Explanation of systematics of CMS p+Pb high multiplicity di-hadron data at =5.02 TeV. Phys. Rev. D 2013, 87, 054014. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Comparison of the Color Glass Condensate to dihadron correlations in proton–proton and proton–nucleus collisions. Phys. Rev. D 2013, 87, 094034. [Google Scholar] [CrossRef]
- Dusling, K.; Mace, M.; Venugopalan, R. Multiparticle collectivity from initial state correlations in high energy proton–nucleus collisions. Phys. Rev. Lett. 2018, 120, 042002. [Google Scholar] [CrossRef] [PubMed]
- Dusling, K.; Mace, M.; Venugopalan, R. Parton model description of multiparticle azimuthal correlations in pA collisions. Phys. Rev. D 2018, 97, 016014. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Beuf, G.; Kovner, A.; Lublinsky, M. Bose enhancement and the ridge. Phys. Lett. B 2015, 751, 448–452. [Google Scholar] [CrossRef]
- Kovchegov, Y.V.; Wertepny, D.E. Long-Range Rapidity Correlations in Heavy-Light Ion Collisions. Nucl. Phys. A 2013, 906, 50–83. [Google Scholar] [CrossRef]
- Kovchegov, Y.V.; Wertepny, D.E. Two-Gluon Correlations in Heavy-Light Ion Collisions: Energy and Geometry Dependence, IR Divergences, and kT-Factorization. Nucl. Phys. A 2014, 925, 254–295. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Beuf, G.; Kovner, A.; Lublinsky, M. Hanbury–Brown–Twiss measurements at large rapidity separations, or can we measure the proton radius in p-A collisions? Phys. Lett. B 2016, 752, 113–121. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Beuf, G.; Kovner, A.; Lublinsky, M. Quark correlations in the Color Glass Condensate: Pauli blocking and the ridge. Phys. Rev. D 2017, 95, 034025. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Wertepny, D.E. Correlations and the ridge in the Color Glass Condensate beyond the glasma graph approximation. J. High Energy Phys. 2018, 5, 207. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Kovner, A.; Lublinsky, M. Double and triple inclusive gluon production at mid rapidity: Quantum interference in p-A scattering. Eur. Phys. J. C 2018, 78, 702. [Google Scholar] [CrossRef]
- Martinez, M.; Sievert, M.D.; Wertepny, D.E. Toward Initial Conditions of Conserved Charges Part I: Spatial Correlations of Quarks and Antiquarks. J. High Energy Phys. 2018, 7, 3. [Google Scholar] [CrossRef]
- Martinez, M.; Sievert, M.D.; Wertepny, D.E. Multiparticle Production at Mid-Rapidity in the Color-Glass Condensate. J. High Energy Phys. 2019, 2, 24. [Google Scholar] [CrossRef]
- Özonder, Ş. Triple-gluon and quadruple-gluon azimuthal correlations from glasma and higher-dimensional ridges. Phys. Rev. D 2015, 91, 034005. [Google Scholar] [CrossRef]
- Özönder, Ş. Predictions on three-particle azimuthal correlations in proton–proton collisions. Turk. J. Phys. 2018, 42, 78–83. [Google Scholar] [CrossRef]
- Davy, M.K.; Marquet, C.; Shi, Y.; Xiao, B.W.; Zhang, C. Two particle azimuthal harmonics in pA collisions. Nucl. Phys. A 2019, 983, 293–309. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Wei, S.Y.; Xiao, B.W. Elliptic Flow of Heavy Quarkonia in pA Collisions. Phys. Rev. Lett. 2019, 122, 172302. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Shi, Y.; Wang, L.; Wei, S.Y.; Xiao, B.W. Collectivity of heavy mesons in proton–nucleus collisions. Phys. Rev. D 2020, 102, 034010. [Google Scholar] [CrossRef]
- Kovner, A.; Skokov, V.V. Does shape matter? v2 vs eccentricity in small x gluon production. Phys. Lett. B 2018, 785, 372–380. [Google Scholar] [CrossRef]
- Kovner, A.; Skokov, V.V. Bose enhancement, the Liouville effective action and the high multiplicity tail in p-A collisions. Phys. Rev. D 2018, 98, 014004. [Google Scholar] [CrossRef]
- Altinoluk, T.; Armesto, N.; Kovner, A.; Lublinsky, M.; Skokov, V.V. Angular correlations in pA collisions from CGC: Multiplicity and mean transverse momentum dependence of v2. Eur. Phys. J. C 2021, 81, 583. [Google Scholar] [CrossRef]
- Agostini, P.; Altinoluk, T.; Armesto, N. Multi-particle production in proton–nucleus collisions in the Color Glass Condensate. Eur. Phys. J. C 2021, 81, 760. [Google Scholar] [CrossRef]
- Jalilian-Marian, J.; Kovchegov, Y.V. Inclusive two-gluon and valence quark–gluon production in DIS and pA. Phys. Rev. D 2004, 70, 114017, Erratum in: Phys. Rev. D 2005, 71, 079901. [Google Scholar] [CrossRef]
- Kovner, A.; Lublinsky, M. One gluon, two gluon: Multigluon production via high energy evolution. J. High Energy Phys. 2006, 11, 083. [Google Scholar] [CrossRef]
- McLerran, L.D.; Venugopalan, R. Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 1994, 49, 2233–2241. [Google Scholar] [CrossRef]
- McLerran, L.D.; Venugopalan, R. Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 1994, 49, 3352–3355. [Google Scholar] [CrossRef]
- Kovner, A.; Rezaeian, A.H. Double parton scattering in the CGC: Double quark production and effects of quantum statistics. Phys. Rev. D 2017, 96, 074018. [Google Scholar] [CrossRef]
- Kovner, A.; Rezaeian, A.H. Multiquark production in p+A collisions: Quantum interference effects. Phys. Rev. D 2018, 97, 074008. [Google Scholar] [CrossRef]
- Lappi, T.; Schenke, B.; Schlichting, S.; Venugopalan, R. Tracing the origin of azimuthal gluon correlations in the Color Glass Condensate. J. High Energy Phys. 2016, 1, 61. [Google Scholar] [CrossRef]
- Kovner, A.; Lublinsky, M.; Skokov, V. Exploring correlations in the CGC wave function: Odd azimuthal anisotropy. Phys. Rev. D 2017, 96, 016010. [Google Scholar] [CrossRef]
- Kovchegov, Y.V.; Skokov, V.V. How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions. Phys. Rev. D 2018, 97, 094021. [Google Scholar] [CrossRef]
- Kohara, A.K.; Marquet, C.; Vila, V. Low projectile density contributions in the dilute-dense CGC framework for two-particle correlations. J. High Energy Phys. 2023, 10, 159. [Google Scholar] [CrossRef]
- Agostini, P.; Altinoluk, T.; Armesto, N. Non-eikonal corrections to multi-particle production in the Color Glass Condensate. Eur. Phys. J. C 2019, 79, 600. [Google Scholar] [CrossRef]
- Agostini, P.; Altinoluk, T.; Armesto, N. Effect of non-eikonal corrections on azimuthal asymmetries in the Color Glass Condensate. Eur. Phys. J. C 2019, 79, 790. [Google Scholar] [CrossRef]
- Agostini, P.; Altinoluk, T.; Armesto, N.; Dominguez, F.; Milhano, J.G. Multiparticle production in proton–nucleus collisions beyond eikonal accuracy. Eur. Phys. J. C 2022, 82, 1001. [Google Scholar] [CrossRef]
- Agostini, P.; Altinoluk, T.; Armesto, N. Finite width effects on the azimuthal asymmetry in proton–nucleus collisions in the Color Glass Condensate. Phys. Lett. B 2023, 840, 137892. [Google Scholar] [CrossRef]
- Golec-Biernat, K.J.; Wusthoff, M. Saturation effects in deep inelastic scattering at low Q**2 and its implications on diffraction. Phys. Rev. D 1998, 59, 014017. [Google Scholar] [CrossRef]
- Golec-Biernat, K.J.; Wusthoff, M. Saturation in diffractive deep inelastic scattering. Phys. Rev. D 1999, 60, 114023. [Google Scholar] [CrossRef]
- Dumitru, A.; Hayashigaki, A.; Jalilian-Marian, J. The Color Glass Condensate and hadron production in the forward region. Nucl. Phys. A 2006, 765, 464–482. [Google Scholar] [CrossRef]
- Altinoluk, T.; Kovner, A. Particle Production at High Energy and Large Transverse Momentum—‘The Hybrid Formalism’ Revisited. Phys. Rev. D 2011, 83, 105004. [Google Scholar] [CrossRef]
- Lappi, T. Azimuthal harmonics of color fields in a high energy nucleus. Phys. Lett. B 2015, 744, 315–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostini, P.; Altinoluk, T.; Armesto, N. Particle Production in pA Collisions at Mid-Rapidity in the Color Glass Condensate. Universe 2024, 10, 58. https://doi.org/10.3390/universe10020058
Agostini P, Altinoluk T, Armesto N. Particle Production in pA Collisions at Mid-Rapidity in the Color Glass Condensate. Universe. 2024; 10(2):58. https://doi.org/10.3390/universe10020058
Chicago/Turabian StyleAgostini, Pedro, Tolga Altinoluk, and Néstor Armesto. 2024. "Particle Production in pA Collisions at Mid-Rapidity in the Color Glass Condensate" Universe 10, no. 2: 58. https://doi.org/10.3390/universe10020058
APA StyleAgostini, P., Altinoluk, T., & Armesto, N. (2024). Particle Production in pA Collisions at Mid-Rapidity in the Color Glass Condensate. Universe, 10(2), 58. https://doi.org/10.3390/universe10020058