Changing-Look Narrow-Line Seyfert 1 Galaxies, their Detection with SVOM, and the Case of NGC 1566
Abstract
:1. Introduction
2. CL Events in NLS1 Galaxies
3. The NLS1 Nature of NGC 1566 and the Feasibility of Detecting CL NLS1 Galaxies with SVOM
4. Implications and Applications of Studying CL Events in NLS1 Galaxies
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In a different AGN classification scheme, they are referred to as ‘population A’ AGN, and the FWHM cut is set around 4000 km [21]. |
2 | We note here that, throughout, we adopt the optical classification of CL events which has been common in recent years. An alternative scheme looks at X-ray spectral variability, and refers to CLs as events where the X-ray spectrum changes from highly absorbed as in type 2 AGN to barely or unabsorbed as in type 1 AGN [32]. We do not discuss possible such X-ray absorption events in NLS1 galaxies. |
3 | Even though this contribution is focused on NLS1 galaxies, we note in passing that some broad-line Seyfert 1 galaxies which changed their Seyfert subtype are at comparable distances to NGC 1566. One such example is NGC 4151. Traditionally known as an intermediate-type Seyfert galaxy (e.g., [59]), its broad Balmer lines were still detected [60,61] but became significantly fainter in 1984 [60,61,62] and were already back to their bright state in January 1985 [63]. |
References
- Komossa, S.; Grupe, D. Extreme accretion events: TDEs and changing-look AGN. Astron. Nachrichten 2023, 344, e20230015. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Malanchev, K.L.; Gaskell, C.M. Changing-look Narrow-Line Seyfert 1s? In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 12. [Google Scholar] [CrossRef]
- Nicastro, F. Broad Emission Line Regions in Active Galactic Nuclei: The Link with the Accretion Power. Astrophys. J. Lett. 2000, 530, L65–L68. [Google Scholar] [CrossRef] [PubMed]
- Janiuk, A.; Czerny, B.; Siemiginowska, A. Radiation Pressure Instability Driven Variability in the Accreting Black Holes. Astrophys. J. 2002, 576, 908–922. [Google Scholar] [CrossRef]
- Grupe, D.; Komossa, S.; Saxton, R. IC 3599 Did It Again: A Second Outburst of the X-Ray Transient Seyfert 1.9 Galaxy. Astrophys. J. Lett. 2015, 803, L28. [Google Scholar] [CrossRef]
- Ross, N.P.; Ford, K.E.S.; Graham, M.; McKernan, B.; Stern, D.; Meisner, A.M.; Assef, R.J.; Dey, A.; Drake, A.J.; Jun, H.D.; et al. A new physical interpretation of optical and infrared variability in quasars. Mon. Not. R. Astron. Soc. 2018, 480, 4468–4479. [Google Scholar] [CrossRef]
- Noda, H.; Done, C. Explaining changing-look AGN with state transition triggered by rapid mass accretion rate drop. Mon. Not. R. Astron. Soc. 2018, 480, 3898–3906. [Google Scholar] [CrossRef]
- Dexter, J.; Begelman, M.C. Extreme AGN variability: Evidence of magnetically elevated accretion? Mon. Not. R. Astron. Soc. 2019, 483, L17–L21. [Google Scholar] [CrossRef]
- Sniegowska, M.; Czerny, B.; Bon, E.; Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 2020, 641, A167. [Google Scholar] [CrossRef]
- Pan, X.; Li, S.L.; Cao, X. The Effects of Large-scale Magnetic Fields on the Model for Repeating Changing-look AGNs. Astrophys. J. 2021, 910, 97. [Google Scholar] [CrossRef]
- Raj, A.; Nixon, C.J.; Doğan, S. Disk Tearing: Numerical Investigation of Warped Disk Instability. Astrophys. J. 2021, 909, 81. [Google Scholar] [CrossRef]
- Feng, J.; Cao, X.; Li, J.w.; Gu, W.M. A Magnetic Disk-outflow Model for Changing Look Active Galactic Nuclei. Astrophys. J. 2021, 916, 61. [Google Scholar] [CrossRef]
- Laha, S.; Meyer, E.; Roychowdhury, A.; Becerra Gonzalez, J.; Acosta-Pulido, J.A.; Thapa, A.; Ghosh, R.; Behar, E.; Gallo, L.C.; Kriss, G.A.; et al. A Radio, Optical, UV, and X-Ray View of the Enigmatic Changing-look Active Galactic Nucleus 1ES 1927 + 654 from Its Pre- to Postflare States. Astrophys. J. 2022, 931, 5. [Google Scholar] [CrossRef]
- Kaaz, N.; Liska, M.T.P.; Jacquemin-Ide, J.; Andalman, Z.L.; Musoke, G.; Tchekhovskoy, A.; Porth, O. Nozzle Shocks, Disk Tearing, and Streamers Drive Rapid Accretion in 3D GRMHD Simulations of Warped Thin Disks. Astrophys. J. 2023, 955, 72. [Google Scholar] [CrossRef]
- Cao, X.; You, B.; Wei, X. An accretion disc with magnetic outflows triggered by a sudden mass accretion event in changing-look active galactic nucleus 1ES 1927 + 654. Mon. Not. R. Astron. Soc. 2023, 526, 2331–2340. [Google Scholar] [CrossRef]
- Wang, J.M.; Bon, E. Changing-look active galactic nuclei: Close binaries of supermassive black holes in action. Astron. Astrophys. 2020, 643, L9. [Google Scholar] [CrossRef]
- Gallo, L. X-ray perspective of Narrow-line Seyfert 1 galaxies. In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 34. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Pogge, R.W. The spectra of narrow-line Seyfert 1 galaxies. Astrophys. J. 1985, 297, 166–176. [Google Scholar] [CrossRef]
- Goodrich, R.W. Spectropolarimetry of “Narrow-Line” Seyfert 1 Galaxies. Astrophys. J. 1989, 342, 224. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P.; Gonçalves, A.C. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies. Astron. Astrophys. 2001, 372, 730–754. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. Front. Astron. Space Sci. 2018, 5, 6. [Google Scholar] [CrossRef]
- Grupe, D.; Beuermann, K.; Mannheim, K.; Thomas, H.C. New bright soft X-ray selected ROSAT AGN. II. Optical emission line properties. Astron. Astrophys. 1999, 350, 805–815. [Google Scholar] [CrossRef]
- Xu, D.W.; Komossa, S.; Wei, J.Y.; Qian, Y.; Zheng, X.Z. An Active Galactic Nucleus Sample with High X-Ray-to-Optical Flux Ratio from RASS. II. Optical Emission Line Properties of Seyfert 1-Type Active Galactic Nuclei. Astrophys. J. 2003, 590, 73–85. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample. Astrophys. J. Suppl. Ser. 2006, 166, 128–153. [Google Scholar] [CrossRef]
- Rakshit, S.; Stalin, C.S.; Kotilainen, J. Spectral Properties of Quasars from Sloan Digital Sky Survey Data Release 14: The Catalog. Astrophys. J. Suppl. Ser. 2020, 249, 17. [Google Scholar] [CrossRef]
- Paliya, V.S.; Stalin, C.S.; Domínguez, A.; Saikia, D.J. Narrow-line Seyfert 1 galaxies in Sloan Digital Sky Survey: A new optical spectroscopic catalogue. Mon. Not. R. Astron. Soc. 2024, 527, 7055–7069. [Google Scholar] [CrossRef]
- Boroson, T.A. Black Hole Mass and Eddington Ratio as Drivers for the Observable Properties of Radio-loud and Radio-quiet QSOs. Astrophys. J. 2002, 565, 78–85. [Google Scholar] [CrossRef]
- Grupe, D. A Complete Sample of Soft X-Ray-selected AGNs. II. Statistical Analysis. Astron. J. 2004, 127, 1799–1810. [Google Scholar] [CrossRef]
- Xu, D.; Komossa, S.; Zhou, H.; Lu, H.; Li, C.; Grupe, D.; Wang, J.; Yuan, W. Correlation Analysis of a Large Sample of Narrow-line Seyfert 1 Galaxies: Linking Central Engine and Host Properties. Astron. J. 2012, 143, 83. [Google Scholar] [CrossRef]
- Komossa, S. Multi-wavelength properties of radio-loud Narrow-line Seyfert 1 galaxies. In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 15. [Google Scholar] [CrossRef]
- Wright, E.L. A Cosmology Calculator for the World Wide Web. Publ. Astron. Soc. Pac. 2006, 118, 1711–1715. [Google Scholar] [CrossRef]
- Matt, G.; Guainazzi, M.; Maiolino, R. Changing look: From Compton-thick to Compton-thin, or the rebirth of fossil active galactic nuclei. Mon. Not. R. Astron. Soc. 2003, 342, 422–426. [Google Scholar] [CrossRef]
- Brandt, W.N.; Pounds, K.A.; Fink, H. The unusual X-ray and optical properties of the ultrasoft active galactic nucleus Zwicky 159.034 (RE J1237 + 264). Mon. Not. R. Astron. Soc. 1995, 273, L47–L52. [Google Scholar] [CrossRef]
- Grupe, D.; Beuermann, K.; Mannheim, K.; Bade, N.; Thomas, H.C.; de Martino, D.; Schwope, A. X-ray outburst of the peculiar Seyfert galaxy IC 3599. Astron. Astrophys. 1995, 299, L5. [Google Scholar] [CrossRef]
- Komossa, S.; Bade, N. The giant X-ray outbursts in NGC 5905 and IC 3599: Follow-up observations and outburst scenarios. Astron. Astrophys. 1999, 343, 775–787. [Google Scholar]
- Komossa, S.; Grupe, D.; Saxton, R.; Gallo, L. Seyfert galaxies with Swift: Giant flares, rapid drops, and other surprises. In Proceedings of the Proceedings of Swift: 10 Years of Discovery (SWIFT 10), Rome, Italy, 2–5 December 2014; p. 143. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Green, P.J.; Anderson, S.F.; Bruce, A.; Eracleous, M.; Graham, M.; Homan, D.; Lawrence, A.; LeBleu, A.; Ross, N.P.; et al. Changing-look Quasar Candidates: First Results from Follow-up Spectroscopy of Highly Optically Variable Quasars. Astrophys. J. 2019, 874, 8. [Google Scholar] [CrossRef]
- Liu, H.Y.; Liu, W.J.; Dong, X.B.; Zhou, H.; Wang, T.; Lu, H.; Yuan, W. A Comprehensive and Uniform Sample of Broad-line Active Galactic Nuclei from the SDSS DR7. Astrophys. J. Suppl. Ser. 2019, 243, 21. [Google Scholar] [CrossRef]
- Frederick, S.; Gezari, S.; Graham, M.J.; Cenko, S.B.; van Velzen, S.; Stern, D.; Blagorodnova, N.; Kulkarni, S.R.; Yan, L.; De, K.; et al. A New Class of Changing-look LINERs. Astrophys. J. 2019, 883, 31. [Google Scholar] [CrossRef]
- Hon, W.J.; Wolf, C.; Onken, C.A.; Webster, R.; Auchettl, K. SkyMapper colours of Seyfert galaxies and changing-look AGN - II. Newly discovered changing-look AGN. Mon. Not. R. Astron. Soc. 2022, 511, 54–70. [Google Scholar] [CrossRef]
- Filippenko, A.V. Optical Spectra of Supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309–355. [Google Scholar] [CrossRef]
- Rees, M.J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 1988, 333, 523–528. [Google Scholar] [CrossRef]
- Komossa, S.; Zhou, H.; Wang, T.; Ajello, M.; Ge, J.; Greiner, J.; Lu, H.; Salvato, M.; Saxton, R.; Shan, H.; et al. Discovery of Superstrong, Fading, Iron Line Emission and Double-peaked Balmer Lines of the Galaxy SDSS J095209.56 + 214313.3: The Light Echo of a Huge Flare. Astrophys. J. Lett. 2008, 678, L13. [Google Scholar] [CrossRef]
- Onori, F.; Cannizzaro, G.; Jonker, P.G.; Kim, M.; Nicholl, M.; Mattila, S.; Reynolds, T.M.; Fraser, M.; Wevers, T.; Brocato, E.; et al. The nuclear transient AT 2017gge: A tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH. Mon. Not. R. Astron. Soc. 2022, 517, 76–98. [Google Scholar] [CrossRef]
- Liu, F.K.; Zhou, Z.Q.; Cao, R.; Ho, L.C.; Komossa, S. Disc origin of broad optical emission lines of the TDE candidate PTF09djl. Mon. Not. R. Astron. Soc. 2017, 472, L99–L103. [Google Scholar] [CrossRef]
- Wang, T.G.; Zhou, H.Y.; Komossa, S.; Wang, H.Y.; Yuan, W.; Yang, C. Extreme Coronal Line Emitters: Tidal Disruption of Stars by Massive Black Holes in Galactic Nuclei? Astrophys. J. 2012, 749, 115. [Google Scholar] [CrossRef]
- Short, P.; Lawrence, A.; Nicholl, M.; Ward, M.; Reynolds, T.M.; Mattila, S.; Yin, C.; Arcavi, I.; Carnall, A.; Charalampopoulos, P.; et al. Delayed appearance and evolution of coronal lines in the TDE AT2019qiz. Mon. Not. R. Astron. Soc. 2023, 525, 1568–1587. [Google Scholar] [CrossRef]
- Komossa, S.; Zhou, H.; Rau, A.; Dopita, M.; Gal-Yam, A.; Greiner, J.; Zuther, J.; Salvato, M.; Xu, D.; Lu, H.; et al. NTT, Spitzer, and Chandra Spectroscopy of SDSSJ095209.56 + 214313.3: The Most Luminous Coronal-line Supernova Ever Observed, or a Stellar Tidal Disruption Event? Astrophys. J. 2009, 701, 105–121. [Google Scholar] [CrossRef]
- Drake, A.J.; Djorgovski, S.G.; Mahabal, A.; Anderson, J.; Roy, R.; Mohan, V.; Ravindranath, S.; Frail, D.; Gezari, S.; Neill, J.D.; et al. The Discovery and Nature of the Optical Transient CSS100217:102913 + 404220. Astrophys. J. 2011, 735, 106. [Google Scholar] [CrossRef]
- Blanchard, P.K.; Nicholl, M.; Berger, E.; Guillochon, J.; Margutti, R.; Chornock, R.; Alexander, K.D.; Leja, J.; Drout, M.R. PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy. Astrophys. J. 2017, 843, 106. [Google Scholar] [CrossRef]
- Zhang, W.J.; Shu, X.W.; Sheng, Z.F.; Sun, L.M.; Dou, L.M.; Jiang, N.; Wang, J.G.; Hu, X.Y.; Wang, Y.B.; Wang, T.G. Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. Astron. Astrophys. 2022, 660, A119. [Google Scholar] [CrossRef]
- Li, D.; Saxton, R.D.; Yuan, W.; Sun, L.; Liu, H.Y.; Jiang, N.; Cheng, H.; Zhou, H.; Komossa, S.; Jin, C. Multiwavelength Study of an X-Ray Tidal Disruption Event Candidate in NGC 5092. Astrophys. J. 2020, 891, 121. [Google Scholar] [CrossRef]
- Hampel, J.; Komossa, S.; Greiner, J.; Reiprich, T.H.; Freyberg, M.; Erben, T. A New X-Ray Tidal Disruption Event Candidate with Fast Variability. Res. Astron. Astrophys. 2022, 22, 055004. [Google Scholar] [CrossRef]
- Burrows, D.N.; Kennea, J.A.; Ghisellini, G.; Mangano, V.; Zhang, B.; Page, K.L.; Eracleous, M.; Romano, P.; Sakamoto, T.; Falcone, A.D.; et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 2011, 476, 421–424. [Google Scholar] [CrossRef]
- Bloom, J.S.; Giannios, D.; Metzger, B.D.; Cenko, S.B.; Perley, D.A.; Butler, N.R.; Tanvir, N.R.; Levan, A.J.; O’Brien, P.T.; Strubbe, L.E.; et al. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science 2011, 333, 203. [Google Scholar] [CrossRef]
- Wei, J.; Cordier, B.; Antier, S.; Antilogus, P.; Atteia, J.L.; Bajat, A.; Basa, S.; Beckmann, V.; Bernardini, M.G.; Boissier, S.; et al. The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities - Scientific prospects of the SVOM mission. arXiv 2016, arXiv:1610.06892. [Google Scholar] [CrossRef]
- Wang, J.; Merritt, D. Revised Rates of Stellar Disruption in Galactic Nuclei. Astrophys. J. 2004, 600, 149–161. [Google Scholar] [CrossRef]
- Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.X.; Zhao, D.H.; Zhang, S.N.; Osborne, J.P.; O’Brien, P.; Willingale, R.; et al. Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe. Proc. Star Clust. Black Holes Galaxies Across Cosm. Time 2016, 312, 68–70. [Google Scholar] [CrossRef]
- Seyfert, C.K. Nuclear Emission in Spiral Nebulae. Astrophys. J. 1943, 97, 28. [Google Scholar] [CrossRef]
- Penston, M.V.; Perez, E. An evolutionary link between Seyfert I and II galaxies. Mon. Not. R. Astron. Soc. 1984, 211, 33P–39P. [Google Scholar] [CrossRef]
- Kielkopf, J.; Brashear, R.; Lattis, J. High-resolution observations of H alpha in NGC 4151. Astrophys. J. 1985, 299, 865–872. [Google Scholar] [CrossRef]
- Lyutyj, V.M.; Oknyanskij, V.L.; Chuvaev, K.K. NGC 4151: Sy in a deep photometric minimum. Pisma V Astron. Zhurnal 1984, 10, 803–807. [Google Scholar]
- Peterson, B.M. NGC 4151. IAU Circ. 1985, 4036, 1. [Google Scholar]
- Shobbrook, R.R. Southern groups and clusters of galaxies. I, Spectra and radial velocities of nineteen southern galaxies. Mon. Not. R. Astron. Soc. 1966, 131, 293. [Google Scholar] [CrossRef]
- Alloin, D.; Pelat, D.; Phillips, M.; Whittle, M. Recent spectral variations in the active nucleus of NGC 1566. Astrophys. J. 1985, 288, 205–220. [Google Scholar] [CrossRef]
- Alloin, D.; Pelat, D.; Phillips, M.M.; Fosbury, R.A.E.; Freeman, K. Recurrent Outbursts in the Broad-Line Region of NGC 1566. Astrophys. J. 1986, 308, 23. [Google Scholar] [CrossRef]
- Ducci, L.; Siegert, T.; Diehl, R.; Sanchez-Fernandez, C.; Ferrigno, C.; Savchenko, V.; Bozzo, E. INTEGRAL detection of hard X-ray emission from NGC 1566. Astron. Telegr. 2018, 11754, 1. [Google Scholar]
- Ferrigno, C.; Siegert, T.; Sanchez-Fernandez, C.; Kuulkers, E.; Ducci, L.; Savchenko, V.; Bozzo, E. Swift follow-up observations determine enhanced nuclear activity from NGC 1566. Astron. Telegr. 2018, 11783, 1. [Google Scholar]
- Grupe, D.; Komossa, S.; Schartel, N. Swift observations in all filters of the Seyfert galaxy NGC 1566 in outburst. Astron. Telegr. 2018, 11903, 1. [Google Scholar]
- Dai, X.; Stanek, K.Z.; Kochanek, C.S.; Shappee, B.J.; ASAS-SN Collaboration. ASAS-SN Light Curve Reveals Dramatic Variability of Seyfert 1.5 AGN in NGC 1566. Astron. Telegr. 2018, 11893, 1. [Google Scholar]
- Oknyansky, V.L.; Lipunov, V.M.; Gorbovskoy, E.S.; Winkler, H.; van Wyk, F.; Tsygankov, S.; Buckley, D.A.H. New changing look case in NGC 1566. Astron. Telegr. 2018, 11915, 1. [Google Scholar] [CrossRef]
- Parker, M.L.; Schartel, N.; Grupe, D.; Komossa, S.; Harrison, F.; Kollatschny, W.; Mikula, R.; Santos-Lleó, M.; Tomás, L. X-ray spectra reveal the reawakening of the repeat changing-look AGN NGC 1566. Mon. Not. R. Astron. Soc. 2019, 483, L88–L92. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Winkler, H.; Tsygankov, S.S.; Lipunov, V.M.; Gorbovskoy, E.S.; van Wyk, F.; Buckley, D.A.H.; Tyurina, N.V. New changing look case in NGC 1566. Mon. Not. R. Astron. Soc. 2019, 483, 558–564. [Google Scholar] [CrossRef]
- Ochmann, M.W.; Kollatschny, W.; Zetzl, M. Spectral changes and BLR kinematics of eruptive changing-look AGN. Contrib. Astron. Obs. Skaln. Pleso 2020, 50, 318–327. [Google Scholar] [CrossRef]
- da Silva, P.; Steiner, J.E.; Menezes, R.B. NGC 1566: Analysis of the nuclear region from optical and near-infrared Integral Field Unit spectroscopy. Mon. Not. R. Astron. Soc. 2017, 470, 3850–3876. [Google Scholar] [CrossRef]
- Ochmann, M.; Kollatschny, W.; Probst, M.; Romero-Colmenero, E.; Buckley, D.; Chelouche, D.; Chini, R.; Grupe, D.; Haas, M.; Kaspi, S.; et al. The transient event in NGC 1566 from 2017 to 2019. I. Astron. Astrophys. 2023. submitted. [Google Scholar]
- Oh, K.; Koss, M.; Markwardt, C.B.; Schawinski, K.; Baumgartner, W.H.; Barthelmy, S.D.; Cenko, S.B.; Gehrels, N.; Mushotzky, R.; Petulante, A.; et al. The 105-Month Swift-BAT All-sky Hard X-Ray Survey. Astrophys. J. Suppl. Ser. 2018, 235, 4. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Cardelli, J.A.; Clayton, G.C.; Mathis, J.S. The Relationship between Infrared, Optical, and Ultraviolet Extinction. Astrophys. J. 1989, 345, 245. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The First Ten Years. In Astronomical Data Analysis Software and Systems; Jacoby, G.H., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series; ASP: London, UK, 1996; Volume 101, p. 17. [Google Scholar]
- Evans, P.A.; Beardmore, A.P.; Page, K.L.; Tyler, L.G.; Osborne, J.P.; Goad, M.R.; O’Brien, P.T.; Vetere, L.; Racusin, J.; Morris, D.; et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 2007, 469, 379–385. [Google Scholar] [CrossRef]
- Godet, O.; Nasser, G.; Atteia, J.; Cordier, B.; Mandrou, P.; Barret, D.; Triou, H.; Pons, R.; Amoros, C.; Bordon, S.; et al. The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM. In Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray; Takahashi, T., den Herder, J.W.A., Bautz, M., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2014; Volume 9144, p. 914424. [Google Scholar] [CrossRef]
- Godet, O.; Atteia, J.L.; Amoros, C.; Roger, P.; Bouchet, L.; Dezalay, J.P.; Yassine, M.; Arcier, B.; Bordon, S.; Lacombe, K.; et al. On-ground calibration highlights for the SVOM/ECLAIRs camera. In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray; den Herder, J.W.A., Nikzad, S., Nakazawa, K., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2022; Volume 12181, p. 1218150. [Google Scholar] [CrossRef]
- He, J.; Sun, J.C.; Wen, X.; Dong, Y.W.; Zhang, J.; Li, L.; Liu, J.T.; Liu, S.; Liu, X.; Liu, Y.; et al. In-orbit background simulation study of SVOM/GRM. Astrophys. Space Sci. 2020, 365, 167. [Google Scholar] [CrossRef]
- Götz, D.; Osborne, J.; Cordier, B.; Paul, J.; Evans, P.; Beardmore, A.; Martindale, A.; Willingale, R.; O’Brien, P.; Basa, S.; et al. The microchannel x-ray telescope for the gamma-ray burst mission SVOM. In Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray; Takahashi, T., den Herder, J.W.A., Bautz, M., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2014; Volume 9144, p. 914423. [Google Scholar] [CrossRef]
- Götz, D.; Boutelier, M.; Burwitz, V.; Chipaux, R.; Cordier, B.; Feldman, C.; Ferrando, P.; Fort, A.; Gonzalez, F.; Gros, A.; et al. The scientific performance of the microchannel X-ray telescope on board the SVOM mission. Exp. Astron. 2023, 55, 487–519. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y.L.; Wei, J.Y. A pilot study of catching high-z GRBs and exploring circumburst environment in the forthcoming SVOM era. Res. Astron. Astrophys. 2020, 20, 124. [Google Scholar] [CrossRef]
- Dagoneau, N.; Schanne, S.; Atteia, J.L.; Götz, D.; Cordier, B. Ultra-Long Gamma-Ray Bursts detection with SVOM/ECLAIRs. Exp. Astron. 2020, 50, 91–123. [Google Scholar] [CrossRef]
- Yu, S.j.; Gonzalez, F.; Wei, J.y.; Zhang, S.n.; Cordier, B. SVOM: A Joint Gamma-ray Burst Detection Mission. Chin. Astron. Astrophys. 2020, 44, 269–282. [Google Scholar] [CrossRef]
- Paul, J.; Wei, J.; Basa, S.; Zhang, S.N. The Chinese-French SVOM mission for gamma-ray burst studies. Comptes Rendus Phys. 2011, 12, 298–308. [Google Scholar] [CrossRef]
- Cordier, B.; Wei, J.; Atteia, J.L.; Basa, S.; Claret, A.; Daigne, F.; Deng, J.; Dong, Y.; Godet, O.; Goldwurm, A.; et al. The SVOM gamma-ray burst mission. arXiv 2015, arXiv:1512.03323. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Czerny, B.; Kostyunin, V. Evolution of an Accretion Disk in an Active Galactic Nucleus. Astrophys. J. 1996, 458, 491. [Google Scholar] [CrossRef]
- LaMassa, S.M.; Cales, S.; Moran, E.C.; Myers, A.D.; Richards, G.T.; Eracleous, M.; Heckman, T.M.; Gallo, L.; Urry, C.M. The Discovery of the First “Changing Look” Quasar: New Insights Into the Physics and Phenomenology of Active Galactic Nucleus. Astrophys. J. 2015, 800, 144. [Google Scholar] [CrossRef]
- Lawrence, A. Quasar viscosity crisis. Nat. Astron. 2018, 2, 102–103. [Google Scholar] [CrossRef]
- Dewangan, G.C.; Griffiths, R.E. Type 2 Counterparts of Narrow-Line Seyfert 1 Galaxies. Astrophys. J. Lett. 2005, 625, L31–L34. [Google Scholar] [CrossRef]
- Pan, X.; Lu, H.; Komossa, S.; Xu, D.; Yuan, W.; Sun, L.; Smith, P.S.; Zhang, S.; Jiang, P.; Yang, C.; et al. A Deeply Buried Narrow-line Seyfert 1 Nucleus Uncovered in Scattered Light. Astrophys. J. 2019, 870, 75. [Google Scholar] [CrossRef]
- Pan, X.; Zhou, H.; Yang, C.; Sun, L.; Smith, P.S.; Ji, T.; Jiang, N.; Jiang, P.; Liu, W.; Lu, H.; et al. Mrk 1239: A Type-2 Counterpart of Narrow-line Seyfert-1? Astrophys. J. 2021, 912, 118. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Tomás, L.; Matzeu, G.A.; Jiménez Bailón, E.; Kalfountzou, E.; Santos-Lleó, M.; Parker, M.L.; Ballo, L.; Loiseau, N.; Ehle, M.; Rodríguez-Pascual, P.; et al. The changing-look AGN NGC 1566 in quiescence with XMM-Newton: A nuclear starburst and an AGN competing in power? Mon. Not. R. Astron. Soc. 2022, 514, 403–415. [Google Scholar] [CrossRef]
- Buhariwalla, M.Z.; Gallo, L.C.; Mao, J.; Komossa, S.; Jiang, J.; Gonzalez, A.; Grupe, D. The collisional and photoionized plasma in the polarized NLS1 galaxy Mrk 1239. Mon. Not. R. Astron. Soc. 2023, 521, 2378–2390. [Google Scholar] [CrossRef]
- Veilleux, S.; Osterbrock, D.E. Spectral Classification of Emission-Line Galaxies. Astrophys. J. Suppl. Ser. 1987, 63, 295. [Google Scholar] [CrossRef]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Ross, N.P.; Lawrence, A.; Goad, M.; Horne, K.; Burgett, W.; Chambers, K.C.; Flewelling, H.; Hodapp, K.; Kaiser, N.; et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 2016, 457, 389–404. [Google Scholar] [CrossRef]
- Runco, J.N.; Cosens, M.; Bennert, V.N.; Scott, B.; Komossa, S.; Malkan, M.A.; Lazarova, M.S.; Auger, M.W.; Treu, T.; Park, D. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies. Astrophys. J. 2016, 821, 33. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.B.; Fan, X.; Jiang, L.; McGreer, I.; Shangguan, J.; Yao, S.; Wang, B.; Joshi, R.; Green, R.; et al. Discovery of 21 New Changing-look AGNs in the Northern Sky. Astrophys. J. 2018, 862, 109. [Google Scholar] [CrossRef]
- Guo, W.J.; Zou, H.; Fawcett, V.A.; Canning, R.; Juneau, S.; Davis, T.M.; Alexander, D.M.; Jiang, L.; Aguilar, J.N.; Ahlen, S.; et al. Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data. arXiv 2023, arXiv:2307.08289. [Google Scholar] [CrossRef]
Name | z | Amplitude of var. in X-rays | FWHM(Hβ) in km | Δ in yrs | Comments |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) |
IC 3599 | 0.021 | >100 | ∼1200 | 0.75 | two outbursts separated by 20 yrs |
no bona-fide NLS1, no Fe ii | |||||
SDSS J123359.12 + 084211.5 | 0.256 | (opt) | 2430 | 11 | change in both Balmer and Fe ii emission |
ZTF18aajupnt | 0.037 | 10 | 940 | 16 | spectral change from LINER to NLS1 |
J1406507–244250 | 0.046 | ∼1 (opt) | 3000 | 18 | little optical continuum variability |
NGC 1566 | 0.005 | 30 | 1950 | 0.33 | repeat Seyfert-type changes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.W.; Komossa, S.; Grupe, D.; Wang, J.; Xin, L.P.; Han, X.H.; Wei, J.Y.; Bai, J.Y.; Bon, E.; Cangemi, F.; et al. Changing-Look Narrow-Line Seyfert 1 Galaxies, their Detection with SVOM, and the Case of NGC 1566. Universe 2024, 10, 61. https://doi.org/10.3390/universe10020061
Xu DW, Komossa S, Grupe D, Wang J, Xin LP, Han XH, Wei JY, Bai JY, Bon E, Cangemi F, et al. Changing-Look Narrow-Line Seyfert 1 Galaxies, their Detection with SVOM, and the Case of NGC 1566. Universe. 2024; 10(2):61. https://doi.org/10.3390/universe10020061
Chicago/Turabian StyleXu, D. W., S. Komossa, D. Grupe, J. Wang, L. P. Xin, X. H. Han, J. Y. Wei, J. Y. Bai, E. Bon, F. Cangemi, and et al. 2024. "Changing-Look Narrow-Line Seyfert 1 Galaxies, their Detection with SVOM, and the Case of NGC 1566" Universe 10, no. 2: 61. https://doi.org/10.3390/universe10020061
APA StyleXu, D. W., Komossa, S., Grupe, D., Wang, J., Xin, L. P., Han, X. H., Wei, J. Y., Bai, J. Y., Bon, E., Cangemi, F., Cordier, B., Dennefeld, M., Gallo, L. C., Kollatschny, W., Kong, D.-F., Ochmann, M. W., Qiu, Y. L., & Schartel, N. (2024). Changing-Look Narrow-Line Seyfert 1 Galaxies, their Detection with SVOM, and the Case of NGC 1566. Universe, 10(2), 61. https://doi.org/10.3390/universe10020061