The “Drake Equation” of Exomoons—A Cascade of Formation, Stability and Detection
Abstract
:1. Introduction
- They reveal the internal structure of protoplanetary disks during planet formation and the secondary planetesimal formation scenarios are the protoplanetary disks.
- 1.
- Formation of a large enough1 moon around a planet
- 2.
- Dynamical survival from its formation until our observation;
- 3.
- Proper instrument and a verified search strategy that is decisive at the actual system parameters.
2. The Cascade Equation of the Problem
The Parameter Domain
3. The Formation Term
- 1.
- What is the most effective way of moon formation? What is the maximum number of moons to form and their maximum possible size?
- 2.
- What are the best initial conditions that maximize the later survival chance of the moons?
- 3.
- What are the stellar and planet properties that are characteristic of increased exomoon occurrence, especially the presence of large moons?
- All discussed scenarios have to be compatible with the presence of the moons in the Solar System, without assuming too specific circumstances during their formation (and hence, following the Copernican Principle).
3.1. Regular Satellites
3.1.1. Solids-Enhanced Subnebula Model
- viscous heating;
- planetary illumination;
- accretional heating of the disk;
- stellar illumination.
3.1.2. Gas-Starved Protosatellite Disk Model
3.1.3. Tidally Spreading Disk Model
3.1.4. Context to Moon Occurrence
3.2. Irregular Satellites
3.2.1. Giant Impact
3.2.2. Tidal Capture
4. The Stability Term
Further Parameters Contributing to the Tidal Evolution
5. The Term for Observability
5.1. Transiting Exomoons
5.2. Detection Statistics
- 1.
- Determine a statistic from the measurements and our understanding;
- 2.
- Compare it to a threshold level;
- 3.
- Evaluate the result with the possible outcomes of Detection, Rejection, and Postponed decision.
Possible False Detections
5.3. Other Detection Methods Than Transit
5.3.1. Radial Velocity of the Parent Planet
5.3.2. Rossitter–Mclaughlin Effect Due to a Moon
5.3.3. Astrometry of the Parent Planet
5.3.4. Planet-Moon Mutual Events
5.3.5. Microlensing
5.3.6. Direct Detection
5.3.7. Transit Spectroscopy of the Exomoon Atmosphere
5.3.8. Rings and Their Internal Structures
5.4. Binary Planets
5.5. Combination of Detection Methods
6. Discussion
6.1. The Structure of the Question
6.2. The Insufficiency of the Catalogs
6.3. Open Questions
- 1.
- FormationA central question concerning formation is what kind of a moon we are looking for and how large exomoons we can hope to observe. Once we decide our threshold, we have to answer whether there is an upper limit for a moon in mass or size. What is the best target for which we are hunting?What is the occurrence of exomoons, and especially, what is the occurrence of these “large enough” moons around different types of planets, and what is the size dependence of the occurrence? Does the exomoon occurrence in general have some spatial dependence in the well-observable parts of the Galaxy?Are there observable diagnostics or proxy parameters belonging to an exomoon? Are there special stellar and/or planetary parameters that, at least in combination, can serve as a red light for a large exomoon? Understanding these aspects is conceptual for observation work.In addition, the validity of different formation pathways for moons is a debated question. Which of the suggested processes is acting in real systems and what is the parameter preference of the different modes? There are still many aspects to understand about the possible formation methods of the Solar System moons as well.
- 2.
- DynamicsHow well do the current equations describe the orbital evolution of the moons? Tidal dynamics is a very complex process in itself, whereas in real systems this will be embedded in the N-body problem of a whole solar system (e.g., [138]). Are we still missing some key aspects that can rearrange the entire picture of our current understanding here?Tidal heating itself also has a wide horizon in habitability studies and the search for a life-supporting environment. Here, the key question is the actual eccentricity of the systems, the initial distribution of the eccentricity, and the time scale and precision of the circularization processes.
- 3.
- ObservationsFrom a technical point of view, high-level signal reconstruction is required. Here, the adaptive handling of possible known sources of instrumental effects, such as data from telemetry and imaging and the less predictable sources like stellar noise, is a central question that can help get rid of the several (very probably) false positive detections that have already been discussed. (Here, we can remark that at the early stages of exoplanet discovery, there were also a meaningful number of false positives, representing the inherent characteristic of very difficult observations.)An open question for observations is that, after the first discovered exomoons, how can we learn something about the internal structure of exomoons. Atmospheric spectroscopy and thermal photometry are two suggested pathways for the future to reveal the reality of these still unknown worlds.One of the most exciting possibilities is the imaging of exomoons. This is a reasonable hope with future ground-based (like the E-ELT) or lunar very big instruments. For instance, (1) a 10 × 10 pixel image of an icy exomoon with a lunar hypertelescope [139] will reveal plumes, like for Europa (2) if the surface of the exomoon is inhomogeneous, multiple subsequent images will tell if the moon is co-rotating with its parent planet (like our Moon); that will give another information of the moon internal structure.
6.4. Habitability and Civilization
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In fact, the requirement of any moon would suffice here as an independent scenario from #3. The emphasis on the large enough size highlights the strong dependence of the occurrence on the moon size, underscoring the complex requirements even in the formation step to form and moon that is, at least presumably observable with some of the state-of-the-art instruments. |
2 | These radii refer to a circular orbit approximation. If the moon has considerable eccentricity, the stability criterion ceases to be analytical at all. |
3 | According to https://exoplanet.eu (accessed on 17 February 2024), the number of known exoplanets is 5633 at the time of writing. |
References
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Charbonneau, D.; Brown, T.M.; Noyes, R.W.; Gilliland, R.L. Detection of an Extrasolar Planet Atmosphere. Astrophys. J. 2002, 568, 377–384. [Google Scholar] [CrossRef]
- Moutou, C.; Deleuil, M.; Guillot, T.; Baglin, A.; Bordé, P.; Bouchy, F.; Cabrera, J.; Csizmadia, S.; Deeg, H.J. CoRoT: Harvest of the exoplanet program. Icarus 2013, 226, 1625–1634. [Google Scholar] [CrossRef]
- Mullally, F.; Coughlin, J.L.; Thompson, S.E.; Rowe, J.; Burke, C.; Latham, D.W.; Batalha, N.M.; Bryson, S.T.; Christiansen, J.; Henze, C.E.; et al. Planetary Candidates Observed by Kepler. VI. Planet Sample from Q1–Q16 (47 Months). Astrophys. J. Ser. 2015, 217, 31. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Benz, W.; Broeg, C.; Fortier, A.; Rando, N.; Beck, T.; Beck, M.; Queloz, D.; Ehrenreich, D.; Maxted, P.F.L.; Isaak, K.G.; et al. The CHEOPS mission. Exp. Astron. 2021, 51, 109–151. [Google Scholar] [CrossRef]
- Sartoretti, P.; Schneider, J. On the detection of satellites of extrasolar planets with the method of transits. Astron. Astroph. Suppl. Ser. 1999, 134, 553–560. [Google Scholar] [CrossRef]
- Szabó, G.M.; Szatmáry, K.; Divéki, Z.; Simon, A. Possibility of a photometric detection of “exomoons”. Astron. Astrophys. 2006, 450, 395–398. [Google Scholar] [CrossRef]
- Simon, A.; Szatmáry, K.; Szabó, G.M. Determination of the size, mass, and density of “exomoons” from photometric transit timing variations. Astron. Astrophys. 2007, 470, 727–731. [Google Scholar] [CrossRef]
- Kipping, D.M. Transit timing effects due to an exomoon. Mon. Not. R. Astron. Soc. 2009, 392, 181–189. [Google Scholar] [CrossRef]
- Ogilvie, G.I.; Lin, D.N.C. Tidal Dissipation in Rotating Giant Planets. Astrophys. J. 2004, 610, 477–509. [Google Scholar] [CrossRef]
- Alvarado-Montes, J.A.; Zuluaga, J.I.; Sucerquia, M. The effect of close-in giant planets’ evolution on tidal-induced migration of exomoons. Mon. Not. R. Astron. Soc. 2017, 471, 3019–3027. [Google Scholar] [CrossRef]
- Kisare, A.M.; Fabrycky, D.C. Tidal dissipation in satellites prevents Hill sphere escape. Mon. Not. R. Astron. Soc. 2024, 527, 4371–4377. [Google Scholar] [CrossRef]
- Dobos, V.; Charnoz, S.; Pál, A.; Roque-Bernard, A.; Szabó, G.M. Survival of Exomoons Around Exoplanets. Pub. Astr. Soc. Pac. 2021, 133, 094401. [Google Scholar] [CrossRef]
- Tokadjian, A.; Piro, A.L. Tidal Heating of Exomoons in Resonance and Implications for Detection. Astron. J. 2023, 165, 173. [Google Scholar] [CrossRef]
- Schneider, J.; Lainey, V.; Cabrera, J. A next step in exoplanetology: Exo-moons. Int. J. Astrobiol. 2015, 14, 191–199. [Google Scholar] [CrossRef]
- Simon, A.E.; Szabó, G.M.; Szatmáry, K. Exomoon Simulations. Earth Moon Planets 2009, 105, 385–389. [Google Scholar] [CrossRef]
- Heller, R.; Rodenbeck, K.; Bruno, G. An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625. Astron. Astrophys. 2019, 624, A95. [Google Scholar] [CrossRef]
- Cassese, B.; Kipping, D. Kepler-1708 b-i is likely undetectable with HST. Mon. Not. R. Astron. Soc. 2022, 516, 3701–3708. [Google Scholar] [CrossRef]
- Muirhead, P.S.; Johnson, J.A.; Apps, K.; Carter, J.A.; Morton, T.D.; Fabrycky, D.C.; Pineda, J.S.; Bottom, M.; Rojas-Ayala, B.; Schlawin, E.; et al. Characterizing the Cool KOIs. III. KOI 961: A Small Star with Large Proper Motion and Three Small Planets. Astrophys. J. 2012, 747, 144. [Google Scholar] [CrossRef]
- Malamud, U.; Perets, H.B.; Schäfer, C.; Burger, C. Collisional formation of massive exomoons of superterrestrial exoplanets. Mon. Not. R. Astron. Soc. 2020, 492, 5089–5101. [Google Scholar] [CrossRef]
- Cabrera, J.; Schneider, J. Detecting companions to extrasolar planets using mutual events. Astron. Astrophys. 2007, 464, 1133–1138. [Google Scholar] [CrossRef]
- Roccetti, G.; Grassi, T.; Ercolano, B.; Molaverdikhani, K.; Crida, A.; Braun, D.; Chiavassa, A. Presence of liquid water during the evolution of exomoons orbiting ejected free-floating planets. Int. J. Astrobiol. 2023, 22, 317–346. [Google Scholar] [CrossRef]
- Sajadian, S.; Sangtarash, P. Microlensing due to free-floating moon-planet systems. Mon. Not. R. Astron. Soc. 2023, 520, 5613–5621. [Google Scholar] [CrossRef]
- Drake, F.D. Project Ozma. Phys. Today 1961, 14, 40. [Google Scholar] [CrossRef]
- Simon, A.E.; Szabó, G.M.; Szatmáry, K.; Kiss, L.L. Methods for exomoon characterization: Combining transit photometry and the Rossiter-McLaughlin effect. Mon. Not. R. Astron. Soc. 2010, 406, 2038–2046. [Google Scholar] [CrossRef]
- Sasaki, T.; Barnes, J.W.; O’Brien, D.P. Outcomes and Duration of Tidal Evolution in a Star-Planet-Moon System. Astrophys. J. 2012, 754, 51. [Google Scholar] [CrossRef]
- Heller, R.; Barnes, R. Exomoon Habitability Constrained by Illumination and Tidal Heating. Astrobiology 2013, 13, 18–46. [Google Scholar] [CrossRef] [PubMed]
- Heller, R.; Williams, D.; Kipping, D.; Limbach, M.A.; Turner, E.; Greenberg, R.; Sasaki, T.; Bolmont, É.; Grasset, O.; Lewis, K.; et al. Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology 2014, 14, 798–835. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, I.; Estrada, P.R. Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus 2003, 163, 198–231. [Google Scholar] [CrossRef]
- Estrada, P.R.; Mosqueira, I.; Lissauer, J.J.; D’Angelo, G.; Cruikshank, D.P. Formation of Jupiter and Conditions for Accretion of the Galilean Satellites. In Europa; Pappalardo, R.T., McKinnon, W.B., Khurana, K.K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2009; p. 27. [Google Scholar] [CrossRef]
- Miguel, Y.; Ida, S. A semi-analytical model for exploring Galilean satellites formation from a massive disk. Icarus 2016, 266, 1–14. [Google Scholar] [CrossRef]
- Heller, R.; Pudritz, R. Water Ice Lines and the Formation of Giant Moons around Super-Jovian Planets. Astrophys. J. 2015, 806, 181. [Google Scholar] [CrossRef]
- Heller, R.; Pudritz, R. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1–20 AU from Sun-like stars. Astron. Astrophys. 2015, 578, A19. [Google Scholar] [CrossRef]
- Inderbitzi, C.; Szulágyi, J.; Cilibrasi, M.; Mayer, L. Formation of satellites in circumplanetary discs generated by disc instability. Mon. Not. R. Astron. Soc. 2020, 499, 1023–1036. [Google Scholar] [CrossRef]
- Cilibrasi, M.; Szulágyi, J.; Grimm, S.L.; Mayer, L. An N-body population synthesis framework for the formation of moons around Jupiter-like planets. Mon. Not. R. Astron. Soc. 2021, 504, 5455–5474. [Google Scholar] [CrossRef]
- Canup, R.M.; Ward, W.R. A common mass scaling for satellite systems of gaseous planets. Nature 2006, 441, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Canup, R.M.; Ward, W.R. Origin of Europa and the Galilean Satellites. In Europa; Pappalardo, R.T., McKinnon, W.B., Khurana, K.K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2009; p. 59. [Google Scholar] [CrossRef]
- Oberg, N.; Kamp, I.; Cazaux, S.; Woitke, P.; Thi, W.F. Circumplanetary disk ices. I. Ice formation vs. viscous evolution and grain drift. Astron. Astrophys. 2022, 667, A95. [Google Scholar] [CrossRef]
- Sasaki, T.; Stewart, G.R.; Ida, S. Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems. Astrophys. J. 2010, 714, 1052–1064. [Google Scholar] [CrossRef]
- Madeira, G.; Izidoro, A.; Giuliatti Winter, S.M. Building the Galilean moons system via pebble accretion and migration: A primordial resonant chain. Mon. Not. R. Astron. Soc. 2021, 504, 1854–1872. [Google Scholar] [CrossRef]
- Heller, R. Astrophysical Simulations and Data Analyses on the Formation, Detection, and Habitability of Moons Around Extrasolar Planets. arXiv 2020, arXiv:2009.01881. [Google Scholar]
- Crida, A.; Charnoz, S. Formation of Regular Satellites from Ancient Massive Rings in the Solar System. Science 2012, 338, 1196. [Google Scholar] [CrossRef]
- Hyodo, R.; Ohtsuki, K.; Takeda, T. Formation of Multiple-satellite Systems From Low-mass Circumplanetary Particle Disks. Astrophys. J. 2015, 799, 40. [Google Scholar] [CrossRef]
- Fujii, Y.I.; Kobayashi, H.; Takahashi, S.Z.; Gressel, O. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks. Astron. J. 2017, 153, 194. [Google Scholar] [CrossRef]
- Canup, R.M.; Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 2001, 412, 708–712. [Google Scholar] [CrossRef]
- Canup, R.M. Simulations of a late lunar-forming impact. Icarus 2004, 168, 433–456. [Google Scholar] [CrossRef]
- Sucerquia, M.; Alvarado-Montes, J.A.; Bayo, A.; Cuadra, J.; Cuello, N.; Giuppone, C.A.; Montesinos, M.; Olofsson, J.; Schwab, C.; Spitler, L.; et al. Cronomoons: Origin, dynamics, and light-curve features of ringed exomoons. Mon. Not. R. Astron. Soc. 2022, 512, 1032–1044. [Google Scholar] [CrossRef]
- Kokubo, E.; Genda, H. Formation of Terrestrial Planets from Protoplanets Under a Realistic Accretion Condition. Astrophys. J. Lett. 2010, 714, L21–L25. [Google Scholar] [CrossRef]
- Lock, S.J.; Stewart, S.T.; Petaev, M.I.; Leinhardt, Z.; Mace, M.T.; Jacobsen, S.B.; Cuk, M. The Origin of the Moon within a Terrestrial Synestia. J. Geophys. Res. (Planets) 2018, 123, 910–951. [Google Scholar] [CrossRef]
- Ćuk, M.; Stewart, S.T. Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning. Science 2012, 338, 1047. [Google Scholar] [CrossRef]
- Lock, S.J.; Stewart, S.T. Giant impacts stochastically change the internal pressures of terrestrial planets. Sci. Adv. 2019, 5, eaav3746. [Google Scholar] [CrossRef]
- Mullen, P.D.; Gammie, C.F. A Magnetized, Moon-forming Giant Impact. Astrophys. J. Lett. 2020, 903, L15. [Google Scholar] [CrossRef]
- Charnoz, S. Physical collisions of moonlets and clumps with the Saturn’s F-ring core. Icarus 2009, 201, 191–197. [Google Scholar] [CrossRef]
- Canup, R.M. Forming a Moon with an Earth-like Composition via a Giant Impact. Science 2012, 338, 1052. [Google Scholar] [CrossRef] [PubMed]
- Akinsanmi, B.; Santos, N.C.; Faria, J.P.; Oshagh, M.; Barros, S.C.C.; Santerne, A.; Charnoz, S. Can planetary rings explain the extremely low density of HIP 41378 f? Astron. Astrophys. 2020, 635, L8. [Google Scholar] [CrossRef]
- Debes, J.H.; Sigurdsson, S. The Survival Rate of Ejected Terrestrial Planets with Moons. Astrophys. J. Lett. 2007, 668, L167–L170. [Google Scholar] [CrossRef]
- Morbidelli, A.; Tsiganis, K.; Batygin, K.; Crida, A.; Gomes, R. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus 2012, 219, 737–740. [Google Scholar] [CrossRef]
- Szulágyi, J.; Cilibrasi, M.; Mayer, L. In Situ Formation of Icy Moons of Uranus and Neptune. Astrophys. J. Lett. 2018, 868, L13. [Google Scholar] [CrossRef]
- Astakhov, S.A.; Burbanks, A.D.; Wiggins, S.; Farrelly, D. Chaos-assisted capture of irregular moons. Nature 2003, 423, 264–267. [Google Scholar] [CrossRef]
- Nogueira, E.; Brasser, R.; Gomes, R. Reassessing the origin of Triton. Icarus 2011, 214, 113–130. [Google Scholar] [CrossRef]
- Williams, D.M. Capture of Terrestrial-Sized Moons by Gas Giant Planets. Astrobiology 2013, 13, 315–323. [Google Scholar] [CrossRef]
- Agnor, C.B.; Hamilton, D.P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 2006, 441, 192–194. [Google Scholar] [CrossRef]
- Heller, R. The nature of the giant exomoon candidate Kepler-1625 b-i. Astron. Astrophys. 2018, 610, A39. [Google Scholar] [CrossRef]
- Porter, S.B.; Grundy, W.M. Post-capture Evolution of Potentially Habitable Exomoons. Astrophys. J. Lett. 2011, 736, L14. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Equilibrium and the Stability of the Roche Ellipsoids. Astrophys. J. 1963, 138, 1182. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Burns, J.A. Orbital stability zones about asteroids II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus 1992, 96, 43–64. [Google Scholar] [CrossRef]
- Holman, M.J.; Wiegert, P.A. Long-Term Stability of Planets in Binary Systems. Astron. J. 1999, 117, 621–628. [Google Scholar] [CrossRef]
- Barnes, J.W.; O’Brien, D.P. Stability of Satellites around Close-in Extrasolar Giant Planets. Astrophys. J. 2002, 575, 1087–1093. [Google Scholar] [CrossRef]
- Domingos, R.C.; Winter, O.C.; Yokoyama, T. Stable satellites around extrasolar giant planets. Mon. Not. R. Astron. Soc. 2006, 373, 1227–1234. [Google Scholar] [CrossRef]
- Heller, R.; Leconte, J.; Barnes, R. Tidal obliquity evolution of potentially habitable planets. Astron. Astrophys. 2011, 528, A27. [Google Scholar] [CrossRef]
- Yang, M.; Xie, J.W.; Zhou, J.L.; Liu, H.G.; Zhang, H. Global Instability of the Exo-moon System Triggered by Photo-evaporation. Astrophys. J. 2016, 833, 7. [Google Scholar] [CrossRef]
- Fortney, J.J.; Marley, M.S.; Barnes, J.W. Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits. Astrophys. J. 2007, 659, 1661–1672. [Google Scholar] [CrossRef]
- Ogilvie, G.I. Tides in rotating barotropic fluid bodies: The contribution of inertial waves and the role of internal structure. Mon. Not. R. Astron. Soc. 2013, 429, 613–632. [Google Scholar] [CrossRef]
- Guenel, M.; Mathis, S.; Remus, F. Unravelling tidal dissipation in gaseous giant planets. Astron. Astrophys. 2014, 566, L9. [Google Scholar] [CrossRef]
- Sucerquia, M.; Ramírez, V.; Alvarado-Montes, J.A.; Zuluaga, J.I. Can close-in giant exoplanets preserve detectable moons? Mon. Not. R. Astron. Soc. 2020, 492, 3499–3508. [Google Scholar] [CrossRef]
- Sucerquia, M.; Alvarado-Montes, J.A.; Zuluaga, J.I.; Cuello, N.; Giuppone, C. Ploonets: Formation, evolution, and detectability of tidally detached exomoons. Mon. Not. R. Astron. Soc. 2019, 489, 2313–2322. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977. [Google Scholar] [CrossRef]
- Kipping, D.M. LUNA: An algorithm for generating dynamic planet-moon transits. Mon. Not. R. Astron. Soc. 2011, 416, 689–709. [Google Scholar] [CrossRef]
- Kipping, D.M. Transit timing effects due to an exomoon—II. Mon. Not. R. Astron. Soc. 2009, 396, 1797–1804. [Google Scholar] [CrossRef]
- Rodenbeck, K.; Heller, R.; Gizon, L. Exomoon indicators in high-precision transit light curves. Astron. Astrophys. 2020, 638, A43. [Google Scholar] [CrossRef]
- Noyola, J.P.; Satyal, S.; Musielak, Z.E. Detection of Exomoons through Observation of Radio Emissions. Astrophys. J. 2014, 791, 25. [Google Scholar] [CrossRef]
- Noyola, J.P.; Satyal, S.; Musielak, Z.E. On the Radio Detection of Multiple-exomoon Systems due to Plasma Torus Sharing. Astrophys. J. 2016, 821, 97. [Google Scholar] [CrossRef]
- Kleisioti, E.; Dirkx, D.; Rovira-Navarro, M.; Kenworthy, M.A. Tidally heated exomoons around ε Eridani b: Observability and prospects for characterization. Astron. Astrophys. 2023, 675, A57. [Google Scholar] [CrossRef]
- Jäger, Z.; Szabó, G.M. Enhanced thermal radiation from a tidally heated exomoon with a single hotspot. Mon. Not. R. Astron. Soc. 2021, 508, 5524–5537. [Google Scholar] [CrossRef]
- Mandel, K.; Agol, E. Analytic Light Curves for Planetary Transit Searches. Astrophys. J. Lett. 2002, 580, L171–L175. [Google Scholar] [CrossRef]
- Luger, R.; Lustig-Yaeger, J.; Agol, E. Planet-Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems. Astrophys. J. 2017, 851, 94. [Google Scholar] [CrossRef]
- Kreidberg, L.; Luger, R.; Bedell, M. No Evidence for Lunar Transit in New Analysis of Hubble Space Telescope Observations of the Kepler-1625 System. Astrophys. J. Lett. 2019, 877, L15. [Google Scholar] [CrossRef]
- Gordon, T.A.; Agol, E. Analytic Light Curve for Mutual Transits of Two Bodies Across a Limb-darkened Star. Astron. J. 2022, 164, 111. [Google Scholar] [CrossRef]
- Hippke, M.; Heller, R. Pandora: A fast open-source exomoon transit detection algorithm. Astron. Astrophys. 2022, 662, A37. [Google Scholar] [CrossRef]
- Csizmadia, S. The Transit and Light Curve Modeller. Mon. Not. R. Astron. Soc. 2020, 496, 4442–4467. [Google Scholar] [CrossRef]
- Kálmán, S.; Csizmadia, S.; Simon, A.E.; Lam, K.W.F.; Deline, A.; Harre, J.V.; Szabó, G.M. Modelling the light curves of transiting exomoons: A zero-order photodynamic agent added to the Transit and Light Curve Modeller. Mon. Not. R. Astron. Soc. 2024, 528, L66–L72. [Google Scholar] [CrossRef]
- Saha, S.; Sengupta, S. Transit Light Curves for Exomoons: Analytical Formalism. Astrophys. J. 2022, 936, 2. [Google Scholar] [CrossRef]
- Kipping, D. Transit origami: A method to coherently fold exomoon transits in time series photometry. Mon. Not. R. Astron. Soc. 2021, 507, 4120–4131. [Google Scholar] [CrossRef]
- Teachey, A. The exomoon corridor for multiple moon systems. Mon. Not. R. Astron. Soc. 2021, 506, 2104–2121. [Google Scholar] [CrossRef]
- Kipping, D. The exomoon corridor: Half of all exomoons exhibit TTV frequencies within a narrow window due to aliasing. Mon. Not. R. Astron. Soc. 2021, 500, 1851–1857. [Google Scholar] [CrossRef]
- Luger, R.; Agol, E.; Bartolić, F.; Foreman-Mackey, D. Analytic Light Curves in Reflected Light: Phase Curves, Occultations, and Non-Lambertian Scattering for Spherical Planets and Moons. Astron. J. 2022, 164, 4. [Google Scholar] [CrossRef]
- Szabó, G.M.; Simon, A.E.; Kiss, L.L.; Regály, Z. Practical suggestions on detecting exomoons in exoplanet transit light curves. In Proceedings of the Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution, Torino, Italy, 11–15 October 2010; Sozzetti, A., Lattanzi, M.G., Boss, A.P., Eds.; Cambridge University Press: Cambridge, UK, 2011; Volume 276, pp. 556–557. [Google Scholar] [CrossRef]
- Simon, A.E.; Szabó, G.M.; Kiss, L.L.; Fortier, A.; Benz, W. CHEOPS Performance for Exomoons: The Detectability of Exomoons by Using Optimal Decision Algorithm. Pub. Astr. Soc. Pac. 2015, 127, 1084. [Google Scholar] [CrossRef]
- Dobos, V.; Haris, A.; Kamp, I.E.E.; van der Tak, F.F.S. A target list for searching for habitable exomoons. Mon. Not. R. Astron. Soc. 2022, 513, 5290–5298. [Google Scholar] [CrossRef]
- Fox, C.; Wiegert, P. Exomoon candidates from transit timing variations: Eight Kepler systems with TTVs explainable by photometrically unseen exomoons. Mon. Not. R. Astron. Soc. 2021, 501, 2378–2393. [Google Scholar] [CrossRef]
- Kipping, D. An Independent Analysis of the Six Recently Claimed Exomoon Candidates. Astrophys. J. Lett. 2020, 900, L44. [Google Scholar] [CrossRef]
- Quarles, B.; Li, G.; Rosario-Franco, M. Application of Orbital Stability and Tidal Migration Constraints for Exomoon Candidates. Astrophys. J. Lett. 2020, 902, L20. [Google Scholar] [CrossRef]
- Teachey, A.; Kipping, D.M. Evidence for a large exomoon orbiting Kepler-1625b. Sci. Adv. 2018, 4, eaav1784. [Google Scholar] [CrossRef] [PubMed]
- Kipping, D.; Bryson, S.; Burke, C.; Christiansen, J.; Hardegree-Ullman, K.; Quarles, B.; Hansen, B.; Szulágyi, J.; Teachey, A. An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. Nat. Astron. 2022, 6, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Heller, R.; Hippke, M. Large Exomoons unlikely around Kepler-1625 b and Kepler-1708 b. Nat. Astron. 2024, 8, 193–206. [Google Scholar] [CrossRef]
- Yahalomi, D.A.; Kipping, D.; Nesvorný, D.; Dalba, P.A.; Benni, P.; Cacho-Negrete, C.; Collins, K.; Earwicker, J.T.; Lewis, J.A.; McLeod, K.K.; et al. Not So Fast Kepler-1513: A perturbing planetary interloper in the exomoon corridor. Mon. Not. R. Astron. Soc. 2023, 527, 620–639. [Google Scholar] [CrossRef]
- MOA-2011-BLG-262L b: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge. Astrophys. J. 2014, 785, 155. [CrossRef]
- Oza, A.V.; Johnson, R.E.; Lellouch, E.; Schmidt, C.; Schneider, N.; Huang, C.; Gamborino, D.; Gebek, A.; Wyttenbach, A.; Demory, B.O.; et al. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets. Astrophys. J. 2019, 885, 168. [Google Scholar] [CrossRef]
- Carter, J.A.; Winn, J.N. Parameter Estimation from Time-series Data with Correlated Errors: A Wavelet-based Method and its Application to Transit Light Curves. Astrophys. J. 2009, 704, 51–67. [Google Scholar] [CrossRef]
- Csizmadia, S.; Smith, A.M.S.; Kálmán, S.; Cabrera, J.; Klagyivik, P.; Chaushev, A.; Lam, K.W.F. Power of wavelets in analyses of transit and phase curves in the presence of stellar variability and instrumental noise. I. Method and validation. Astron. Astrophys. 2023, 675, A106. [Google Scholar] [CrossRef]
- Kálmán, S.; Szabó, G.M.; Csizmadia, S. Power of wavelets in analyses of transit and phase curves in the presence of stellar variability and instrumental noise. II. Accuracy of the transit parameters. Astron. Astrophys. 2023, 675, A107. [Google Scholar] [CrossRef]
- Hwang, K.H.; Udalski, A.; Bond, I.A.; Albrow, M.D.; Chung, S.J.; Gould, A.; Han, C.; Jung, Y.K.; Ryu, Y.H.; Shin, I.G.; et al. OGLE-2015-BLG-1459L: The Challenges of Exo-moon Microlensing. Astron. J. 2018, 155, 259. [Google Scholar] [CrossRef]
- Kipping, D.M.; Fossey, S.J.; Campanella, G.; Schneider, J.; Tinetti, G. Pathways towards Habitable Moons. In Pathways towards Habitable Planets; Astronomical Society of the Pacific Conference Series; Coudé du Foresto, V., Gelino, D.M., Ribas, I., Eds.; 2010; Volume 430, p. 139. Available online: https://arxiv.org/pdf/0911.5170.pdf (accessed on 1 February 2024). [CrossRef]
- Hyodo, R.; Charnoz, S.; Ohtsuki, K.; Genda, H. Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus 2017, 282, 195–213. [Google Scholar] [CrossRef]
- Saillenfest, M.; Sulis, S.; Charpentier, P.; Santerne, A. Oblique rings from migrating exomoons: A possible origin for long-period exoplanets with enlarged radii. Astron. Astrophys. 2023, 675, A174. [Google Scholar] [CrossRef]
- Hyodo, R.; Ohtsuki, K. Saturn’s F ring and shepherd satellites a natural outcome of satellite system formation. Nat. Geosci. 2015, 8, 686–689. [Google Scholar] [CrossRef]
- Zuluaga, J.I.; Sucerquia, M.; Alvarado-Montes, J.A. The bright side of the light curve: A general photometric model of non-transiting exorings. Astron. Comput. 2022, 40, 100623. [Google Scholar] [CrossRef]
- Lazzoni, C.; Rice, K.; Zurlo, A.; Hinkley, S.; Desidera, S. Binary planet formation through tides. Mon. Not. R. Astron. Soc. 2024, 527, 3837–3846. [Google Scholar] [CrossRef]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef]
- Benisty, M.; Bae, J.; Facchini, S.; Keppler, M.; Teague, R.; Isella, A.; Kurtovic, N.T.; Pérez, L.M.; Sierra, A.; Andrews, S.M.; et al. A Circumplanetary Disk around PDS70c. Astrophys. J. Lett. 2021, 916, L2. [Google Scholar] [CrossRef]
- Delrez, L.; Ehrenreich, D.; Alibert, Y.; Bonfanti, A.; Borsato, L.; Fossati, L.; Hooton, M.J.; Hoyer, S.; Pozuelos, F.J.; Salmon, S.; et al. Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS. Nat. Astron. 2021, 5, 775–787. [Google Scholar] [CrossRef]
- Dedrick, C.M.; Fulton, B.J.; Knutson, H.A.; Howard, A.W.; Beatty, T.G.; Cargile, P.A.; Gaudi, B.S.; Hirsch, L.A.; Kuhn, R.B.; Lund, M.B.; et al. Two Planets Straddling the Habitable Zone of the Nearby K Dwarf Gl 414A. Astron. J. 2021, 161, 86. [Google Scholar] [CrossRef]
- Zakhozhay, O.V.; Launhardt, R.; Trifonov, T.; Kürster, M.; Reffert, S.; Henning, T.; Brahm, R.; Vinés, J.I.; Marleau, G.D.; Patel, J.A. Radial velocity survey for planets around young stars (RVSPY). A transiting warm super-Jovian planet around HD 114082, a young star with a debris disk. Astron. Astrophys. 2022, 667, L14. [Google Scholar] [CrossRef]
- Vanderburg, A.; Becker, J.C.; Kristiansen, M.H.; Bieryla, A.; Duev, D.A.; Jensen-Clem, R.; Morton, T.D.; Latham, D.W.; Adams, F.C.; Baranec, C.; et al. Five Planets Transiting a Ninth Magnitude Star. Astrophys. J. Lett. 2016, 827, L10. [Google Scholar] [CrossRef]
- Pont, F.; Hébrard, G.; Irwin, J.M.; Bouchy, F.; Moutou, C.; Ehrenreich, D.; Guillot, T.; Aigrain, S.; Bonfils, X.; Berta, Z.; et al. Spin-orbit misalignment in the HD 80606 planetary system. Astron. Astrophys. 2009, 502, 695–703. [Google Scholar] [CrossRef]
- Dalba, P.A.; Kane, S.R.; Dragomir, D.; Villanueva, S.; Collins, K.A.; Jacobs, T.L.; LaCourse, D.M.; Gagliano, R.; Kristiansen, M.H.; Omohundro, M.; et al. The TESS-Keck Survey. VIII. Confirmation of a Transiting Giant Planet on an Eccentric 261 Day Orbit with the Automated Planet Finder Telescope. Astron. J. 2022, 163, 61. [Google Scholar] [CrossRef]
- Kostov, V.B.; Powell, B.P.; Orosz, J.A.; Welsh, W.F.; Cochran, W.; Collins, K.A.; Endl, M.; Hellier, C.; Latham, D.W.; MacQueen, P.; et al. TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data. Astron. J. 2021, 162, 234. [Google Scholar] [CrossRef]
- Rowe, J.F.; Bryson, S.T.; Marcy, G.W.; Lissauer, J.J.; Jontof-Hutter, D.; Mullally, F.; Gilliland, R.L.; Issacson, H.; Ford, E.; Howell, S.B.; et al. Validation of Kepler’s Multiple Planet Candidates. III. Light Curve Analysis and Announcement of Hundreds of New Multi-planet Systems. Astrophys. J. 2014, 784, 45. [Google Scholar] [CrossRef]
- Hobson, M.J.; Trifonov, T.; Henning, T.; Jordán, A.; Rojas, F.; Espinoza, N.; Brahm, R.; Eberhardt, J.; Jones, M.I.; Mekarnia, D.; et al. TOI-199 b: A well-characterized 100-day transiting warm giant planet with TTVs seen from Antarctica. arXiv 2023, arXiv:2309.14915. [Google Scholar] [CrossRef]
- Ulmer-Moll, S.; Osborn, H.P.; Tuson, A.; Egger, J.A.; Lendl, M.; Maxted, P.; Bekkelien, A.; Simon, A.E.; Olofsson, G.; Adibekyan, V.; et al. TOI-5678b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS. Astron. Astrophys. 2023, 674, A43. [Google Scholar] [CrossRef]
- Garai, Z.; Osborn, H.P.; Gandolfi, D.; Brandeker, A.; Sousa, S.G.; Lendl, M.; Bekkelien, A.; Broeg, C.; Cameron, A.C.; Egger, J.A.; et al. Refined parameters of the HD 22946 planetary system and the true orbital period of planet d. Astron. Astrophys. 2023, 674, A44. [Google Scholar] [CrossRef]
- Osborn, H.P.; Nowak, G.; Hébrard, G.; Masseron, T.; Lillo-Box, J.; Pallé, E.; Bekkelien, A.; Florén, H.G.; Guterman, P.; Simon, A.E.; et al. Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops. Mon. Not. R. Astron. Soc. 2023, 523, 3069–3089. [Google Scholar] [CrossRef]
- Limbach, M.A.; Vos, J.M.; Winn, J.N.; Heller, R.; Mason, J.C.; Schneider, A.C.; Dai, F. On the Detection of Exomoons Transiting Isolated Planetary-mass Objects. Astrophys. J. Lett. 2021, 918, L25. [Google Scholar] [CrossRef]
- Limbach, M.A.; Vos, J.M.; Soares-Furtado, M.; Vanderburg, A.; Heller, R.; Winn, J.N.; Schneider, A.C.; Cody, A.M.; Dai, F.; Hensley, B.; et al. Prospects for the Detection of Exomoons Transiting Planetary Mass Objects with Infrared Space-Based Observatories. Bull. Am. Astron. Soc. 2022, 54, 102–183. [Google Scholar]
- Ehrenreich, D.; Delrez, L.; Akinsanmi, B.; Wilson, T.G.; Bonfanti, A.; Beck, M.; Benz, W.; Hoyer, S.; Queloz, D.; Alibert, Y.; et al. A full transit of v2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS. Astron. Astrophys. 2023, 671, A154. [Google Scholar] [CrossRef]
- Szabó, G.M.; Kálmán, S.; Pribulla, T.; Claret, A.; Mugnai, L.V.; Pascale, E.; Waltham, D.; Borsato, L.; Garai, Z.; Szabó, R. High-precision photometry with Ariel. Exp. Astron. 2022, 53, 607–634. [Google Scholar] [CrossRef]
- Harada, C.K.; Dressing, C.D.; Alam, M.K.; Kirk, J.; López-Morales, M.; Ohno, K.; Akinsanmi, B.; Barros, S.C.C.; Buchhave, L.A.; Collier Cameron, A.; et al. Stability and Detectability of Exomoons Orbiting HIP 41378 f, a Temperate Jovian Planet with an Anomalously Low Apparent Density. Astron. J. 2023, 166, 208. [Google Scholar] [CrossRef]
- Labeyrie, A.; Mourard, D.; Schneider, J. Lunar or space-based hypertelescope for direct high-resolution imaging. Exp. Astron. 2021, 51, 1003–1011. [Google Scholar] [CrossRef]
- Jaki, S.L. The Origin of Science and the Science of Its Origin; Scottish Academic Press: Edinburgh, UK, 1979. [Google Scholar]
- Heller, R.; Kiss, L. Exoplanet Vision 2050. arXiv 2019, arXiv:1911.12114. [Google Scholar]
Process | Planets | Era | Relative Mass | ||
Regular | Subnebula | G + sE | in situ | ||
Protosatellite disk | G + sE | in situ | |||
Spreading disk | All | Post | ? | ||
giant impact | R | post | ?? | ||
Tidal capture | All | post | “no limit” |
Moon | No Moon | |
---|---|---|
TP | FP | |
Found | true positive | Fals positive |
FN | TN | |
Not found | Fals negative | True negative |
Subfiled | Number of Papers | Number of Citatons | H-Index | Tori-Index |
---|---|---|---|---|
Formation | 180 | 5198 | 36 | 27.7 |
Stability | 114 | 2461 | 27 | 21.5 |
Detection | 384 | 11993 | 54 | 65.9 |
Host Star | No. Planets d | Period [d] | G mag | Discovery |
---|---|---|---|---|
HD 136352 | 1 | 107.245 | 5.485 | [122] (2021) |
GJ 414 A | 1 | 749.83 | 7.720 | [123] (2021) |
HD 114082 | 1 | 109.75 | 8.094 | [124] (2022) |
HIP 41378 | 3 | 278, 369, 542 † | 8.810 | [125] (2016) |
HD 80606 | 1 | 111.436 | 8.820 | [126] (2009) |
TOI-2180 b | 1 | 260.79 | 9.011 | [127] (2022) |
TIC 172900988 A | 1 | 188–204 ‡ | 10.048 | [128] (2021) |
Kepler-126 | 1 | 100.283 | 10.454 | [129] (2014) |
TOI-199 | 1 | 104.854 | 10.578 | [130] (2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, G.M.; Schneider, J.; Dencs, Z.; Kálmán, S. The “Drake Equation” of Exomoons—A Cascade of Formation, Stability and Detection. Universe 2024, 10, 110. https://doi.org/10.3390/universe10030110
Szabó GM, Schneider J, Dencs Z, Kálmán S. The “Drake Equation” of Exomoons—A Cascade of Formation, Stability and Detection. Universe. 2024; 10(3):110. https://doi.org/10.3390/universe10030110
Chicago/Turabian StyleSzabó, Gyula M., Jean Schneider, Zoltán Dencs, and Szilárd Kálmán. 2024. "The “Drake Equation” of Exomoons—A Cascade of Formation, Stability and Detection" Universe 10, no. 3: 110. https://doi.org/10.3390/universe10030110
APA StyleSzabó, G. M., Schneider, J., Dencs, Z., & Kálmán, S. (2024). The “Drake Equation” of Exomoons—A Cascade of Formation, Stability and Detection. Universe, 10(3), 110. https://doi.org/10.3390/universe10030110