Next Article in Journal
Improved Statistical Analysis for the Neutrinoless Double-Beta Decay Matrix Element of 136Xe
Previous Article in Journal
Rotation Matrix of a Charged Symmetrical Body: One-Parameter Family of Solutions in Elementary Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset

School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
Universe 2024, 10(6), 251; https://doi.org/10.3390/universe10060251
Submission received: 30 April 2024 / Revised: 30 May 2024 / Accepted: 31 May 2024 / Published: 4 June 2024

Abstract

:
The stochastic signal observed by collaborations such as NANOGrav, PPTA, EPTA +InPTA, and CPTA may originate from gravitational waves induced by primordial curvature perturbations during inflation. This study investigates small-scale properties of inflation and reheating, assuming a log-normal form for the power spectrum of the primordial curvature and a reheating phase equation of state w = 1 / 9 . Inflation and reheating scenarios are thoroughly examined using Bayesian methods applied to the NANOGrav 15-year dataset. The analysis establishes constraints on the reheating temperature, suggesting T rh 0.1 Gev , consistent with Big Bang nucleosynthesis constraints. Additionally, the NANOGrav 15-year dataset requires the amplitude (A∼0.1) and width ( Δ 0.001 ) of the primordial curvature power spectrum to be within specific ranges. A notable turning point in the energy density of scalar-induced gravitational waves occurs due to a change in the equation of state w. This turning point signifies a transition from the reheating epoch to radiation domination. Further observations of scalar-induced gravitational waves could provide insights into the precise timing of this transition, enhancing our understanding of early Universe dynamics.
Keywords:
PTA; inflation; reheating

1. Introduction

The detection of gravitational waves (GWs) resulting from compact binary mergers by the LIGO–Virgo–KAGRA collaboration [1,2,3] represents a groundbreaking achievement in astrophysics and cosmology, significantly advancing our understanding of the diverse population of GW sources [4,5,6,7,8,9,10,11,12,13,14,15]. This milestone has opened avenues for exploring stochastic GW backgrounds, which promise profound insights into various astrophysical and cosmological phenomena [16,17], such as dark matter [18,19,20] and modified gravity [21,22,23,24,25,26].
Recent observations from multiple pulsar timing array (PTA) collaborations—including at the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) [27,28], Parkes Pulsar Timing Array (PPTA) [29,30], European Pulsar Timing Array (EPTA) in combination with Indian Pulsar Timing Array (InPTA) [31,32], and Chinese Pulsar Timing Array (CPTA) [33]—have revealed a common spectrum signal characterized by the Hellings–Downs angular correlation feature inherent in GWs. This distinctive signal, resembling a fiducial characteristic strain spectrum of f 2 / 3 , is regarded as an ensemble of inspiraling supermassive black hole binaries by default [27,30,32,33]. However, alternative interpretations are also possible, and uncovering the precise origin of this interesting signal remains an active area of investigation [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. For more about the physical processes generating GWs with the PTA band, see [70,71,72,73,74,75,76,77,78,79,80].
Scalar-induced gravitational waves (SIGWs), linked to the formation of primordial black holes (PBHs), originate from secondary orders of linear scalar perturbations during the inflationary epoch, and these perturbations are seeded by primordial curvature perturbations, as extensively discussed in the literature [5,7,9,11,12,13,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124]. Generating significant SIGWs requires amplifying the amplitude of the primordial curvature power spectrum. This amplification is often realized by inflationary models that incorporate transitional ultra-slow-roll phases [91,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166]. The frequencies of the peak of SIGWs are intricately linked to the scales of the peak in the power spectrum of primordial curvature perturbations. Specifically, the frequencies of SIGWs in nanohertz (nHz) correspond to the scales characterized by wave numbers on the order of k p ∼107 Mpc−1 in the power spectrum of primordial curvature perturbations. This relationship between frequency and scale is critical for understanding the detectability and observational implications of SIGWs in the universe’s early history.
This study is centered around analyzing the PTA signal associated with SIGWs, specifically during the reheating epoch, with the equation of state being w = 1 / 9 before the radiation-dominated era. This particular equation of state emerges within the framework of a scalar field and offers a solution to the problem of excessive PBH production observed when fitting PTA data with SIGWs. Recent investigations have underscored challenges linked to this issue, highlighting the significance of non-Gaussianity in primordial curvature perturbations [38,39,167]. Our study aims to rigorously constrain inflationary and reheating scenarios by employing Bayesian methods applied to the NANOGrav 15-year dataset within the context of the equation of state w = 1 / 9 .
To organize our analysis effectively, we structure our discussion as follows: Section 2 offers a succinct review of the energy density of SIGWs. Section 3 presents our findings and interpretations derived from the analysis. Finally, Section 4 concludes our study, summarizing key insights and implications. Throughout this work, we adopt natural units, where the speed of light c = 1 .

2. Scalar-Induced Gravitational Waves

In this section, we delve into a cosmological scenario featuring a reheating epoch with the equation of state parameter satisfying w = 1 / 9 , which precedes the onset of Big Bang nucleosynthesis (BBN). Specifically, we focus on a scenario where the transition from the reheating era with w = 1 / 9 to the standard radiation-dominated (RD) era is instantaneous, with the temperature of the Universe at this transition denoted by T rh . The w = 1/9 reheating scenario was chosen for this study because it represents a non-standard equation of state that can arise in certain inflationary models with non-canonical kinetic terms or non-trivial interactions [168,169]. Investigating this scenario allows us to explore the potential observable consequences of alternative reheating dynamics and broaden our understanding of the range of possible post-inflationary behaviors. Previous investigations of SIGWs in similar scenarios have been conducted [170], where the authors fixed the reheating temperature T rh and the width of the primordial curvature power spectrum. In contrast, our study loosens the constraints on the reheating temperature T rh and the width of the peak in the power spectrum of primordial curvature perturbations. Utilizing Bayesian methods and data from the NANOGrav 15-year dataset, we rigorously constrain both the primordial curvature power spectrum and T rh . This method enables us to examine a wider range of parameter space, providing insights into the implications for cosmological models that incorporate SIGWs within these scenarios.
For a general constant equation of state w and constant sound speed c s , the energy density in a SIGW can be expressed as [86]
Ω GW , rh = k k rh 2 b 0 d v s . | 1 v | 1 + v d u T ( u , v , b , c s ) P R ( k u ) P R ( k v ) ,
where the subscript “ rh ” denotes the “reheating”, b ( 1 3 w ) / ( 1 + 3 w ) , and P R is the power spectrum of the primordial curvature perturbations. Here, u = | k k ˜ | / k and v = k ˜ / k are dimensionless variables, where the auxiliary wave number k ˜ comes from the Fourier transform of the second-order source, k = | k | and k ˜ = | k ˜ | [84]. The transfer function T ( u , v , b , c s ) is   
T ( u , v , b , c s ) = N ( b , c s ) 4 v 2 ( 1 u 2 + v 2 ) 2 4 u 2 v 2 2 | 1 y 2 | b × { P b b ( y ) + b + 2 b + 1 P b + 2 b ( y ) 2 Θ ( c s ( u + v ) 1 ) + 4 π 2 Q b b ( y ) + b + 2 b + 1 Q b + 2 b ( y ) 2 Θ ( c s ( u + v ) 1 ) + 4 π 2 Q b b ( y ) + 2 b + 2 b + 1 Q b + 2 b ( y ) 2 Θ ( 1 c s ( u + v ) ) } .
Here, the variable y 1 [ 1 c s 2 ( u v ) 2 ] / ( 2 c s 2 u v ) , the function Θ ( x ) is the Heaviside theta function, and the function N ( b , c s ) is
N ( b , c s ) 4 2 b 3 c s 4 Γ ( b + 3 2 ) 4 b + 2 2 b + 3 2 1 + b 2 ( 1 + b ) ,
where the function Γ ( x ) is the Gamma function.
The Ferrers functions P ν μ ( x ) and Q ν μ ( x ) , along with Olver’s function Q ν μ ( x ) in the transfer function (2), can be expressed using hypergeometric functions. Specifically, they are defined as follows:
P ν μ ( x ) = 1 + x 1 x μ / 2 F ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) ,
Q ν μ ( x ) = π 2 sin μ π ( cos μ π 1 + x 1 x μ / 2 F ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) 1 x 1 + x μ / 2 F ( ν + 1 , ν ; 1 + μ ; 1 2 1 2 x ) ) ,
Q ν μ ( x ) = π 2 sin μ π Γ ( ν + μ + 1 ) ( x + 1 x 1 μ / 2 F ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) x 1 x + 1 μ / 2 F ( ν + 1 , ν ; 1 + μ ; 1 2 1 2 x ) ) .
and
F ( a , b ; c ; x ) = 1 Γ ( c ) F ( a , b ; c ; x ) ,
where F ( a , b ; c ; x ) is Gauss’s hypergeometric function. By utilizing the correspondence between the evolution of the GW’s energy density and that of radiation, we can calculate the energy density in the present-day GW. This calculation is
Ω GW , 0 h 2 1.62 × 10 5 Ω r , 0 h 2 4.18 × 10 5 g r ( T rh ) 106.75 g s ( T rh ) 106.75 4 3 Ω GW , rh ,
where g r and g s are the effective energy and entropy degrees of freedom at the generation of the SIGWs and Ω r , 0 h 2 is the energy density parameter of the present-day radiation, respectively.
In this study, we adopt the log-normal form for the power spectrum of primordial curvature perturbations, represented as:
P R ( k ) = A 2 π Δ exp ln 2 ( k / k ) 2 Δ 2 ,
where Δ controls the width of the spectrum, k determines the peak position in the spectrum, and A denotes the amplitude of the spectrum. This paper focuses on narrow peak spectra with Δ 0.1 , a condition supported by our results presented below. For an extremely narrow peak spectrum with Δ 0 , the log-normal form power spectrum (9) reduces to a δ -function form, P R = A k δ ( k k ) . For a log-normal spectrum with a finite width, the corresponding energy density parameter Ω GW , 0 ( Δ ) h 2 for SIGWs is given by [100]
Ω GW , 0 ( Δ ) h 2 = Erf 1 Δ sinh 1 k 2 k Ω GW , 0 ( δ ) h 2 .
Here, Ω GW , 0 ( Δ ) h 2 denotes the present energy density in SIGWs from the primordial curvature power spectrum with a finite-width log-normal form, Ω GW , 0 ( δ ) h 2 is the energy density induced by the δ -function form, and the function Erf ( x ) denotes the error function.
At the horizon crossing for a wavenumber k, the temperature T is approximately related by:
k 1.5 × 10 7 Mpc g r ( T ) 106.75 1 2 g s ( T ) 106.75 1 3 T GeV .
The corresponding frequency f related to the scale k is:
f = k 2 π 1.6 nHz k 10 6 Mpc 1 .
Combining Equations (11) and (12), we establish the relationship between the frequency f and the temperature T as:
f 24 nHz g r ( T ) 106.75 1 2 g s ( T ) 106.75 1 3 T GeV .
It is important to note that there is a minimum requirement for the reheating temperature during BBN, which is T rh 4 MeV , as indicated by various studies [171,172,173,174]. Consequently, this imposes an upper limit on the reheating frequency f rh , ensuring that f rh 0.1 nHz , which falls below the sensitivity range of pulsar timing arrays.

3. Methodology and Results

In this section, we proceed under the assumption that the signal in the NANOGrav 15-year dataset originates from gravitational waves induced by the finite-width log-normal form of the primordial curvature power spectrum given in Equation (9). We utilize Bayesian methods on the NANOGrav 15-year dataset to derive constraints on both the primordial curvature power spectrum and the reheating temperature T rh . The analysis involves leveraging the information from the 14 frequency bins in the NANOGrav 15-year dataset [27,34] to infer the posterior distribution of T rh and the parameters within the primordial curvature power spectrum parameterized as Equation (9). We employ the Bilby code [175], which implements the dynesty algorithm for nested sampling [176], to compute the posterior distribution. To establish the log-likelihood function, we begin by calculating the energy density of scalar-induced gravitational waves at frequencies corresponding to the 14 bins in our analysis. Subsequently, we create the logarithm of the probability density functions using 14 independent kernel density estimates. Finally, we multiply the probabilities from these 14 bins to construct the comprehensive likelihood function [39,43,46,47,177,178]. This formulation is expressed as
L ( Λ ) = i = 1 14 L i Ω GW f i , Λ .
Here, Λ = { A , Δ , f , T rh } encompasses all the model parameters, covering both those associated with the primordial curvature power spectrum (9) and the reheating temperature T rh . The priors for these parameters are specified in Table 1, where U indicates a uniform distribution.
Figure 1 presents the posterior distributions for the parameters linked to the primordial curvature power spectrum defined in Equation (9), including the reheating temperature denoted as T rh . Table 1 compiles the median posterior values and the boundaries of the 90 % credible intervals for these parameters. Within the posterior distributions, the relationship between the scale k and the corresponding frequency f is governed by Equation (12). At a confidence level of 90 % , the NANOGrav 15-year dataset requires the width of the power spectrum of primordial curvature to be Δ 0.001 , which supports the narrow peak assumption made in Section 2. Moreover, the lower bound on the reheating temperature, T rh 0.1 Gev , conforms to the constraints imposed by BBN. The constraints on the amplitude A and the peak scale frequencies f of the primordial curvature power spectrum are consistent with those reported in a publication by the NANOGrav Collaboration investigating new physical phenomena [34].
Using the optimal parameter values obtained from Table 1, we computed the energy density in SIGWs. The resulting energy density is depicted by the blue line in Figure 2, and the blue region denotes the 1- σ confidence intervals. In particular, around a frequency of approximately f∼10−8.1 Hz, we observe a notable turning point in the energy density of SIGWs. This turning point corresponds to a change in the equation of state w, which affects the evolution of SIGWs and leads to a distinctive feature in the energy density spectrum.
The energy density spectrum of SIGWs, as shown in Figure 2, exhibits a sharp decrease in the ultraviolet region around the frequency of f∼10−6. This feature is a characteristic of SIGWs originating from a primordial curvature power spectrum with a narrow peak. In the case of a δ -function form of the primordial curvature power spectrum, P ζ ( k ) = A ζ δ [ ln ( k / k ) ] , which represents an extremely narrow peak, the energy density of SIGWs cuts off at scales of k 2 k  [90]. Our data analysis requires a very narrow peak in the primordial curvature power spectrum, with constraints indicating Δ < 0.001 . This narrow peak directly results in the observed sharp decrease in the energy density of SIGWs. Therefore, the feature in Figure 2 is a consequence of the primordial curvature power spectrum having a very narrow peak, as necessitated by the PTA data.

4. Conclusions and Discussion

The stochastic signal observed by collaborations such as NANOGrav, PPTA, and EPTA, along with InPTA and CPTA, likely originates from gravitational waves induced by primordial curvature perturbations generated during inflation. Following inflation, the Universe undergoes a reheating phase aimed at increasing its temperature. Information about the small-scale properties of inflation and reheating can be encoded in the energy density of SIGWs. This study explores the small-scale characteristics of inflation and reheating and assumes that the equation of state during the reheating phase is characterized by w = 1 / 9 . During the oscillation of the inflaton, w = p 2 p + 2 for a power-law potential V ( ϕ ) ϕ p [179,180]. The choice w = 1 / 9 corresponds to a scalar field potential of the form V ( ϕ ) ϕ 5 / 2 near its minimum, which exhibits a flatter minimum compared to the standard quadratic case, leading to distinct reheating dynamics. The ϕ 5 / 2 potential form can arise in inflationary models with non-canonical kinetic terms, such as k-inflation [181] or DBI inflation [182], or be motivated by considering higher-order corrections to the inflaton potential [183]. The total potential model under consideration includes terms that allow for a smooth transition from the inflationary phase to this specific reheating scenario [184].
To model the power spectrum of the primordial curvature perturbations, a log-normal form is adopted. By applying Bayesian methods and analyzing the NANOGrav 15-year dataset, we obtain posterior distributions for the key parameters. These include the characteristic frequency f , the width parameter Δ , the amplitude A of the primordial curvature power spectrum and the reheating temperature T rh / GeV . The obtained posterior values are log 10 ( f / Hz ) = 6 . 26 1.16 + 1.20 , log 10 Δ = 3 . 6 2.2 + 2.3 , log 10 A = 0 . 28 1.20 + 1.16 and log 10 ( T rh / GeV ) = 0 . 12 1.51 + 0.64 .
It is important to acknowledge that the w = 1 / 9 reheating scenario is one among many possibilities for post-inflationary dynamics. The more commonly assumed scenario is w = 0 , which corresponds to a quadratic potential minimum [185,186]. However, exploring alternative scenarios, such as w = 1 / 9 , allows us to investigate the potential observational signatures of non-standard reheating dynamics and test the robustness of our conclusions. The choice of equation of state during reheating can have significant effects on observable signatures, such as the energy density of scalar-induced gravitational waves [86,101,187]. In the w = 1 / 9 scenario, distinct reheating dynamics can lead to modifications in the spectral shape and amplitude of the gravitational wave background compared to the standard w = 0 case. Exploring these alternative scenarios provides valuable insights into the sensitivity of observables to the details of the reheating phase and can help constrain inflationary models based on observational data [188].
Furthermore, the energy density of SIGWs displays a distinctive turning point, which corresponds to a change in the equation of state w. This turning point signifies the transition from the reheating epoch to the radiation-dominated era, highlighting a significant phase in the evolution of the early Universe. Future observational data on scalar-induced gravitational waves hold the potential to refine our understanding further, potentially pinpointing the precise time when the reheating phase transitioned into the radiation-dominated era. Such insights could shed light on fundamental aspects of cosmological evolution during the early Universe and aid in the refinement of theoretical models of inflation and reheating.

Funding

This research was supported in part by the National Natural Science Foundation of China under Grant No. 12305060 and the Talent-Introduction Program of Hubei Polytechnic University under Grant No. 19xjk25R.

Data Availability Statement

No new data were created.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef]
  2. Abbott, R. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
  3. Abbott, R. et al. [LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration] GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Phys. Rev. X 2023, 13, 041039. [Google Scholar] [CrossRef]
  4. Abbott, B.P. et al. [LIGO Scientific Collaboration and the Virgo Collaboration] Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophys. J. Lett. 2019, 882, L24. [Google Scholar] [CrossRef]
  5. Chen, Z.C.; Huang, F.; Huang, Q.G. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. Astrophys. J. 2019, 871, 97. [Google Scholar] [CrossRef]
  6. Luo, H.M.; Lin, W.; Chen, Z.C.; Huang, Q.G. Extraction of gravitational wave signals with optimized convolutional neural network. Front. Phys. 2020, 15, 14601. [Google Scholar] [CrossRef]
  7. Chen, Z.C.; Huang, Q.G. Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer. JCAP 2020, 08, 039. [Google Scholar] [CrossRef]
  8. Abbott, R. et al. [LIGO Scientific Collaboration and the Virgo Collaboration] Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 2021, 913, L7. [Google Scholar] [CrossRef]
  9. Chen, Z.C.; Yuan, C.; Huang, Q.G. Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo. Phys. Lett. B 2022, 829, 137040. [Google Scholar] [CrossRef]
  10. Abbott, R. et al. [LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration] Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Phys. Rev. X 2023, 13, 011048. [Google Scholar] [CrossRef]
  11. Chen, Z.C.; Du, S.S.; Huang, Q.G.; You, Z.Q. Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3. JCAP 2023, 03, 024. [Google Scholar] [CrossRef]
  12. Liu, L.; You, Z.Q.; Wu, Y.; Chen, Z.C. Constraining the merger history of primordial-black-hole binaries from GWTC-3. Phys. Rev. D 2023, 107, 063035. [Google Scholar] [CrossRef]
  13. Zheng, L.M.; Li, Z.; Chen, Z.C.; Zhou, H.; Zhu, Z.H. Towards a reliable reconstruction of the power spectrum of primordial curvature perturbation on small scales from GWTC-3. Phys. Lett. B 2023, 838, 137720. [Google Scholar] [CrossRef]
  14. You, Z.Q.; Chen, Z.C.; Liu, L.; Yi, Z.; Liu, X.J.; Wu, Y.; Gong, Y. Constraints on peculiar velocity distribution of binary black holes using gravitational waves with GWTC-3. JCAP 2024, 05, 031. [Google Scholar] [CrossRef]
  15. Chen, Z.C.; Liu, L. Constraining the nonstandard propagating gravitational waves in the cosmological background with GWTC-3. arXiv 2024, arXiv:2405.10031. [Google Scholar]
  16. Liu, X.J.; You, Z.Q.; Chen, Z.C.; Du, S.S.; Li, A.; Zhu, X.J. On the Spin Period Distribution of Millisecond Pulsars. Astrophys. J. 2024, 962, 80. [Google Scholar] [CrossRef]
  17. Du, S.S.; Liu, X.J.; Chen, Z.C.; You, Z.Q.; Zhu, X.J.; Zhu, Z.H. On the initial spin period distribution of neutron stars. arXiv 2024, arXiv:2402.14030. [Google Scholar]
  18. Wei, H.; Chen, Z.C.; Liu, J. Cosmological Constraints on Variable Warm Dark Matter. Phys. Lett. B 2013, 720, 271–276. [Google Scholar] [CrossRef]
  19. Wei, H.; Liu, J.; Chen, Z.C.; Yan, X.P. Indistinguishability of Warm Dark Matter, Modified Gravity, and Coupled Cold Dark Matter. Phys. Rev. D 2013, 88, 043510. [Google Scholar] [CrossRef]
  20. Du, S.S.; Wei, J.J.; You, Z.Q.; Chen, Z.C.; Zhu, Z.H.; Liang, E.W. Model-independent determination of H0 and ΩK, 0 using time-delay galaxy lenses and gamma-ray bursts. Mon. Not. R. Astron. Soc. 2023, 521, 4963–4975. [Google Scholar] [CrossRef]
  21. Chen, Z.C.; Wu, Y.; Wei, H. Post–Newtonian Approximation of Teleparallel Gravity Coupled with a Scalar Field. Nucl. Phys. B 2015, 894, 422–438. [Google Scholar] [CrossRef]
  22. Wu, Y.; Chen, Z.C.; Wang, J.; Wei, H. f(T) non-linear massive gravity and the cosmic acceleration. Commun. Theor. Phys. 2015, 63, 701–708. [Google Scholar] [CrossRef]
  23. Huang, Y.; Gong, Y.; Liang, D.; Yi, Z. Thermodynamics of scalar–tensor theory with non-minimally derivative coupling. Eur. Phys. J. C 2015, 75, 351. [Google Scholar] [CrossRef]
  24. Zhu, Y.; Gong, Y. PPN parameters in gravitational theory with nonminimally derivative coupling. Int. J. Mod. Phys. D 2016, 26, 1750005. [Google Scholar] [CrossRef]
  25. Gong, Y.; Papantonopoulos, E.; Yi, Z. Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves. Eur. Phys. J. C 2018, 78, 738. [Google Scholar] [CrossRef]
  26. Fanizza, G.; Franchini, G.; Gasperini, M.; Tedesco, L. Comparing the luminosity distance for gravitational waves and electromagnetic signals in a simple model of quadratic gravity. Gen. Rel. Grav. 2020, 52, 111. [Google Scholar] [CrossRef]
  27. Agazie, G. et al. [The NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
  28. Agazie, G. et al. [The NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars. Astrophys. J. Lett. 2023, 951, L9. [Google Scholar] [CrossRef]
  29. Zic, A. et al. [The PPTA Collaboration] The Parkes Pulsar Timing Array third data release. Publ. Astron. Soc. Austral. 2023, 40, e049. [Google Scholar] [CrossRef]
  30. Reardon, D.J. et al. [The PPTA Collaboration] Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
  31. Antoniadis, J. et al. [EPTA Collaboration] The second data release from the European Pulsar Timing Array—I. The dataset and timing analysis. Astron. Astrophys. 2023, 678, A48. [Google Scholar] [CrossRef]
  32. Antoniadis, J. et al. [EPTA Collaboration and InPTA Collaboration] The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
  33. Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
  34. Afzal, A. et al. [The NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
  35. Agazie, G. et al. [The NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
  36. Antoniadis, J. et al. [EPTA Collaboration] The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter and the early Universe. arXiv 2023, arXiv:2306.16227. [Google Scholar]
  37. Yi, Z.; Gao, Q.; Gong, Y.; Wang, Y.; Zhang, F. Scalar induced gravitational waves in light of Pulsar Timing Array data. Sci. China Phys. Mech. Astron. 2023, 66, 120404. [Google Scholar] [CrossRef]
  38. Franciolini, G.; Iovino, A., Jr.; Vaskonen, V.; Veermae, H. Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non–Gaussianities. Phys. Rev. Lett. 2023, 131, 201401. [Google Scholar] [CrossRef]
  39. Liu, L.; Chen, Z.C.; Huang, Q.G. Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays. Phys. Rev. D 2024, 109, L061301. [Google Scholar] [CrossRef]
  40. Vagnozzi, S. Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. JHEAp 2023, 39, 81–98. [Google Scholar] [CrossRef]
  41. Cai, Y.F.; He, X.C.; Ma, X.H.; Yan, S.F.; Yuan, G.W. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations. Sci. Bull. 2023, 68, 2929–2935. [Google Scholar] [CrossRef] [PubMed]
  42. Bi, Y.C.; Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. Sci. China Phys. Mech. Astron. 2023, 66, 120402. [Google Scholar] [CrossRef]
  43. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Cosmological interpretation for the stochastic signal in pulsar timing arrays. Sci. China Phys. Mech. Astron. 2024, 67, 240412. [Google Scholar] [CrossRef]
  44. Franciolini, G.; Racco, D.; Rompineve, F. Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays. Phys. Rev. Lett. 2024, 132, 081001. [Google Scholar] [CrossRef] [PubMed]
  45. You, Z.Q.; Yi, Z.; Wu, Y. Constraints on primordial curvature power spectrum with pulsar timing arrays. JCAP 2023, 11, 065. [Google Scholar] [CrossRef]
  46. Jin, J.H.; Chen, Z.C.; Yi, Z.; You, Z.Q.; Liu, L.; Wu, Y. Confronting sound speed resonance with pulsar timing arrays. JCAP 2023, 09, 016. [Google Scholar] [CrossRef]
  47. Liu, L.; Chen, Z.C.; Huang, Q.G. Probing the equation of state of the early Universe with pulsar timing arrays. JCAP 2023, 11, 071. [Google Scholar] [CrossRef]
  48. An, H.; Su, B.; Tai, H.; Wang, L.T.; Yang, C. Phase transition during inflation and the gravitational wave signal at pulsar timing arrays. arXiv 2023, arXiv:2308.00070. [Google Scholar]
  49. Zhang, Z.; Cai, C.; Su, Y.H.; Wang, S.; Yu, Z.H.; Zhang, H.H. Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations. Phys. Rev. D 2023, 108, 095037. [Google Scholar] [CrossRef]
  50. Das, B.; Jaman, N.; Sami, M. Gravitational wave background from quintessential inflation and NANOGrav data. Phys. Rev. D 2023, 108, 103510. [Google Scholar] [CrossRef]
  51. Balaji, S.; Domènech, G.; Franciolini, G. Scalar-induced gravitational wave interpretation of PTA data: The role of scalar fluctuation propagation speed. JCAP 2023, 10, 041. [Google Scholar] [CrossRef]
  52. Du, X.K.; Huang, M.X.; Wang, F.; Zhang, Y.K. Did the nHZ Gravitational Waves Signatures Observed By NANOGrav Indicate Multiple Sector SUSY Breaking? arXiv 2023, arXiv:2307.02938. [Google Scholar]
  53. Oikonomou, V.K. Flat energy spectrum of primordial gravitational waves versus peaks and the NANOGrav 2023 observation. Phys. Rev. D 2023, 108, 043516. [Google Scholar] [CrossRef]
  54. Yi, Z.; You, Z.Q.; Wu, Y.; Chen, Z.C.; Liu, L. Exploring the NANOGrav Signal and Planet-mass Primordial Black Holes through Higgs Inflation. arXiv 2023, arXiv:2308.14688. [Google Scholar]
  55. Yi, Z.; You, Z.Q.; Wu, Y. Model-independent reconstruction of the primordial curvature power spectrum from PTA data. JCAP 2024, 01, 066. [Google Scholar] [CrossRef]
  56. Chen, Z.C.; Huang, Q.G.; Liu, C.; Liu, L.; Liu, X.J.; Wu, Y.; Wu, Y.M.; Yi, Z.; You, Z.Q. Prospects for Taiji to detect a gravitational-wave background from cosmic strings. JCAP 2024, 03, 022. [Google Scholar] [CrossRef]
  57. Wu, Y.M.; Chen, Z.C.; Bi, Y.C.; Huang, Q.G. Constraining the graviton mass with the NANOGrav 15 year data set. Class. Quant. Grav. 2024, 41, 075002. [Google Scholar] [CrossRef]
  58. Bi, Y.C.; Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Constraints on the velocity of gravitational waves from the NANOGrav 15-year data set. Phys. Rev. D 2024, 109, L061101. [Google Scholar] [CrossRef]
  59. Chen, Z.C.; Wu, Y.M.; Bi, Y.C.; Huang, Q.G. Search for nontensorial gravitational-wave backgrounds in the NANOGrav 15-year dataset. Phys. Rev. D 2024, 109, 084045. [Google Scholar] [CrossRef]
  60. Liu, L.; Wu, Y.; Chen, Z.C. Simultaneously probing the sound speed and equation of state of the early Universe with pulsar timing arrays. JCAP 2024, 04, 011. [Google Scholar] [CrossRef]
  61. Fei, Q. Constraints on the primordial curvature power spectrum by pulsar timing array data: A polynomial parameterization approach. Commun. Theor. Phys. 2024, 76, 015404. [Google Scholar] [CrossRef]
  62. Chen, Z.C.; Li, S.L.; Wu, P.; Yu, H. NANOGrav hints for first-order confinement-deconfinement phase transition in different QCD-matter scenarios. Phys. Rev. D 2024, 109, 043022. [Google Scholar] [CrossRef]
  63. Wang, Z.; Lei, L.; Jiao, H.; Feng, L.; Fan, Y.Z. The nanohertz stochastic gravitational wave background from cosmic string loops and the abundant high redshift massive galaxies. Sci. China Phys. Mech. Astron. 2023, 66, 120403. [Google Scholar] [CrossRef]
  64. Chen, Z.C.; Liu, L. Is PSR J0514-4002E in a PBH-NS binary? arXiv 2024, arXiv:2401.12889. [Google Scholar]
  65. Chen, Z.C.; Liu, L. Can we distinguish the adiabatic fluctuations and isocurvature fluctuations with pulsar timing arrays? arXiv 2024, arXiv:2402.16781. [Google Scholar]
  66. Chen, Z.C.; Li, J.; Liu, L.; Yi, Z. Probing the speed of scalar-induced gravitational waves with pulsar timing arrays. Phys. Rev. D 2024, 109, L101302. [Google Scholar] [CrossRef]
  67. Chen, Z.C.; Liu, L. Detecting a Gravitational-Wave Background from Null Energy Condition Violation: Prospects for Taiji. arXiv 2024, arXiv:2404.08375. [Google Scholar]
  68. Chen, Z.C.; Liu, L. Constraints on Inflation with Null Energy Condition Violation from Advanced LIGO and Advanced Virgo’s First Three Observing Runs. arXiv 2024, arXiv:2404.07075. [Google Scholar]
  69. Geller, M.; Ghosh, S.; Lu, S.; Tsai, Y. Challenges in interpreting the NANOGrav 15-year dataset as early Universe gravitational waves produced by an ALP induced instability. Phys. Rev. D 2024, 109, 063537. [Google Scholar] [CrossRef]
  70. Zhu, X.J.; Cui, W.; Thrane, E. The minimum and maximum gravitational-wave background from supermassive binary black holes. Mon. Not. R. Astron. Soc. 2019, 482, 2588–2596. [Google Scholar] [CrossRef]
  71. Li, J.; Chen, Z.C.; Huang, Q.G. Measuring the tilt of primordial gravitational-wave power spectrum from observations. Sci. China Phys. Mech. Astron. 2019, 62, 110421, Erratum in Sci. China Phys. Mech. Astron. 2021, 64, 250451. [Google Scholar] [CrossRef]
  72. Chen, Z.C.; Yuan, C.; Huang, Q.G. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. Sci. China Phys. Mech. Astron. 2021, 64, 120412. [Google Scholar] [CrossRef]
  73. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 925, 37. [Google Scholar] [CrossRef]
  74. Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release. Commun. Theor. Phys. 2022, 74, 105402. [Google Scholar] [CrossRef]
  75. Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 936, 20. [Google Scholar] [CrossRef]
  76. Wu, Y.M.; Chen, Z.C.; Huang, Q.G.; Zhu, X.; Bhat, N.D.R.; Feng, Y.; Hobbs, G.; Manchester, R.N.; Russell, C.J.; Shannon, R.M. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. Phys. Rev. D 2022, 106, L081101. [Google Scholar] [CrossRef]
  77. Falxa, M. et al. [IPTA Collaboration] Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array. Mon. Not. R. Astron. Soc. 2023, 521, 5077–5086. [Google Scholar] [CrossRef]
  78. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset. Phys. Rev. D 2023, 107, 042003. [Google Scholar] [CrossRef]
  79. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Pulsar timing residual induced by ultralight tensor dark matter. JCAP 2023, 09, 021. [Google Scholar] [CrossRef]
  80. Agazie, G. et al. [The International Pulsar Timing Array Collaboration] Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background. Astrophys. J. 2024, 966, 105. [Google Scholar] [CrossRef]
  81. Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
  82. Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. R. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef]
  83. Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef]
  84. Baumann, D.; Steinhardt, P.J.; Takahashi, K.; Ichiki, K. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D 2007, 76, 084019. [Google Scholar] [CrossRef]
  85. Saito, R.; Yokoyama, J. Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 2009, 102, 161101, Erratum in Phys. Rev. Lett. 2011, 107, 069901. [Google Scholar] [CrossRef] [PubMed]
  86. Domènech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. [Google Scholar] [CrossRef]
  87. Alabidi, L.; Kohri, K.; Sasaki, M.; Sendouda, Y. Observable Spectra of Induced Gravitational Waves from Inflation. JCAP 2012, 09, 017. [Google Scholar] [CrossRef]
  88. Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef]
  89. Nakama, T.; Silk, J.; Kamionkowski, M. Stochastic gravitational waves associated with the formation of primordial black holes. Phys. Rev. D 2017, 95, 043511. [Google Scholar] [CrossRef]
  90. Kohri, K.; Terada, T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys. Rev. D 2018, 97, 123532. [Google Scholar] [CrossRef]
  91. Di, H.; Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. JCAP 2018, 07, 007. [Google Scholar] [CrossRef]
  92. Cheng, S.L.; Lee, W.; Ng, K.W. Primordial black holes and associated gravitational waves in axion monodromy inflation. JCAP 2018, 07, 001. [Google Scholar] [CrossRef]
  93. Lu, Y.; Gong, Y.; Yi, Z.; Zhang, F. Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves. JCAP 2019, 12, 031. [Google Scholar] [CrossRef]
  94. Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Resonant multiple peaks in the induced gravitational waves. JCAP 2019, 05, 013. [Google Scholar] [CrossRef]
  95. Cai, R.g.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101. [Google Scholar] [CrossRef] [PubMed]
  96. Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Pulsar Timing Array Constraints on the Induced Gravitational Waves. JCAP 2019, 10, 059. [Google Scholar] [CrossRef]
  97. Cai, R.G.; Guo, Z.K.; Liu, J.; Liu, L.; Yang, X.Y. Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. JCAP 2020, 06, 013. [Google Scholar] [CrossRef]
  98. Wu, Y. Merger history of primordial black-hole binaries. Phys. Rev. D 2020, 101, 083008. [Google Scholar] [CrossRef]
  99. Cai, R.G.; Ding, Y.C.; Yang, X.Y.; Zhou, Y.F. Constraints on a mixed model of dark matter particles and primordial black holes from the galactic 511 keV line. JCAP 2021, 03, 057. [Google Scholar] [CrossRef]
  100. Pi, S.; Sasaki, M. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak. JCAP 2020, 09, 037. [Google Scholar] [CrossRef]
  101. Domènech, G.; Pi, S.; Sasaki, M. Induced gravitational waves as a probe of thermal history of the universe. JCAP 2020, 08, 017. [Google Scholar] [CrossRef]
  102. Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries. Phys. Rev. D 2019, 99, 063523. [Google Scholar] [CrossRef]
  103. Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the merger history on the merger rate density of primordial black hole binaries. Eur. Phys. J. C 2019, 79, 717. [Google Scholar] [CrossRef]
  104. Liu, L.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Merger rate distribution of primordial black hole binaries with electric charges. Phys. Rev. D 2020, 102, 043508. [Google Scholar] [CrossRef]
  105. Liu, L.; Yang, X.Y.; Guo, Z.K.; Cai, R.G. Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations. JCAP 2023, 01, 006. [Google Scholar] [CrossRef]
  106. Chen, Z.C.; Yuan, C.; Huang, Q.G. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. Phys. Rev. Lett. 2020, 124, 251101. [Google Scholar] [CrossRef] [PubMed]
  107. Yuan, C.; Chen, Z.C.; Huang, Q.G. Scalar induced gravitational waves in different gauges. Phys. Rev. D 2020, 101, 063018. [Google Scholar] [CrossRef]
  108. Yuan, C.; Chen, Z.C.; Huang, Q.G. Log-dependent slope of scalar induced gravitational waves in the infrared regions. Phys. Rev. D 2020, 101, 043019. [Google Scholar] [CrossRef]
  109. Yuan, C.; Chen, Z.C.; Huang, Q.G. Probing primordial–black-hole dark matter with scalar induced gravitational waves. Phys. Rev. D 2019, 100, 081301. [Google Scholar] [CrossRef]
  110. Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef]
  111. Liu, L.; Christiansen, O.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone. Phys. Rev. D 2020, 102, 103520. [Google Scholar] [CrossRef]
  112. Liu, L.; Christiansen, O.; Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone. Eur. Phys. J. C 2021, 81, 1048. [Google Scholar] [CrossRef]
  113. Yi, Z.; Fei, Q. Constraints on primordial curvature spectrum from primordial black holes and scalar-induced gravitational waves. Eur. Phys. J. C 2023, 83, 82. [Google Scholar] [CrossRef]
  114. Papanikolaou, T.; Tzerefos, C.; Basilakos, S.; Saridakis, E.N. Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity. JCAP 2022, 10, 013. [Google Scholar] [CrossRef]
  115. Papanikolaou, T.; Tzerefos, C.; Basilakos, S.; Saridakis, E.N. No constraints for f(T) gravity from gravitational waves induced from primordial black hole fluctuations. Eur. Phys. J. C 2023, 83, 31. [Google Scholar] [CrossRef]
  116. Chakraborty, A.; Chanda, P.K.; Pandey, K.L.; Das, S. Formation and Abundance of Late-forming Primordial Black Holes as Dark Matter. Astrophys. J. 2022, 932, 119. [Google Scholar] [CrossRef]
  117. Liu, L.; Kim, S.P. Gravitational and electromagnetic radiations from binary black holes with electric and magnetic charges. arXiv 2022, arXiv:2201.01138. [Google Scholar]
  118. Chen, Z.C.; Huang, Q.G. Merger Rate Distribution of Primordial-Black-Hole Binaries. Astrophys. J. 2018, 864, 61. [Google Scholar] [CrossRef]
  119. Liu, L.; Kim, S.P. Merger rate of charged black holes from the two-body dynamical capture. JCAP 2022, 03, 059. [Google Scholar] [CrossRef]
  120. Chen, Z.C.; Kim, S.P.; Liu, L. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Hyperbolic orbits on a cone. Commun. Theor. Phys. 2023, 75, 065401. [Google Scholar] [CrossRef]
  121. Meng, D.S.; Yuan, C.; Huang, Q.G. Primordial black holes generated by the non-minimal spectator field. Sci. China Phys. Mech. Astron. 2023, 66, 280411. [Google Scholar] [CrossRef]
  122. Garcia-Saenz, S.; Lu, Y.; Shuai, Z. Scalar-induced gravitational waves from ghost inflation and parity violation. Phys. Rev. D 2023, 108, 123507. [Google Scholar] [CrossRef]
  123. Huang, Q.G.; Yuan, C.; Chen, Z.C.; Liu, L. GW230529_181500: A Potential Primordial Binary Black Hole Merger in the Mass Gap. arXiv 2024, arXiv:2404.05691. [Google Scholar]
  124. Chen, Z.C.; Hall, A. Confronting primordial black holes with LIGO-Virgo-KAGRA and the Einstein Telescope. arXiv 2024, arXiv:2402.03934. [Google Scholar]
  125. Martin, J.; Motohashi, H.; Suyama, T. Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation. Phys. Rev. D 2013, 87, 023514. [Google Scholar] [CrossRef]
  126. Motohashi, H.; Starobinsky, A.A.; Yokoyama, J. Inflation with a constant rate of roll. JCAP 2015, 09, 018. [Google Scholar] [CrossRef]
  127. Yi, Z.; Gong, Y. On the constant-roll inflation. JCAP 2018, 03, 052. [Google Scholar] [CrossRef]
  128. Yi, Z.; Gong, Y. Nonminimal coupling and inflationary attractors. Phys. Rev. D 2016, 94, 103527. [Google Scholar] [CrossRef]
  129. Fei, Q.; Gong, Y.; Lin, J.; Yi, Z. The reconstruction of tachyon inflationary potentials. JCAP 2017, 08, 018. [Google Scholar] [CrossRef]
  130. Garcia-Bellido, J.; Ruiz Morales, E. Primordial black holes from single field models of inflation. Phys. Dark Univ. 2017, 18, 47–54. [Google Scholar] [CrossRef]
  131. Germani, C.; Prokopec, T. On primordial black holes from an inflection point. Phys. Dark Univ. 2017, 18, 6–10. [Google Scholar] [CrossRef]
  132. Motohashi, H.; Hu, W. Primordial Black Holes and Slow-Roll Violation. Phys. Rev. D 2017, 96, 063503. [Google Scholar] [CrossRef]
  133. Ezquiaga, J.M.; Garcia-Bellido, J.; Ruiz Morales, E. Primordial Black Hole production in Critical Higgs Inflation. Phys. Lett. B 2018, 776, 345–349. [Google Scholar] [CrossRef]
  134. Yi, Z.; Gong, Y. Gauss–Bonnet Inflation and the String Swampland. Universe 2019, 5, 200. [Google Scholar] [CrossRef]
  135. Yi, Z.; Gong, Y.; Sabir, M. Inflation with Gauss–Bonnet coupling. Phys. Rev. D 2018, 98, 083521. [Google Scholar] [CrossRef]
  136. Ballesteros, G.; Beltran Jimenez, J.; Pieroni, M. Black hole formation from a general quadratic action for inflationary primordial fluctuations. JCAP 2019, 06, 016. [Google Scholar] [CrossRef]
  137. Dalianis, I.; Kehagias, A.; Tringas, G. Primordial black holes from α-attractors. JCAP 2019, 01, 037. [Google Scholar] [CrossRef]
  138. Bezrukov, F.; Pauly, M.; Rubio, J. On the robustness of the primordial power spectrum in renormalized Higgs inflation. JCAP 2018, 02, 040. [Google Scholar] [CrossRef]
  139. Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H. Single Field Double Inflation and Primordial Black Holes. JCAP 2017, 09, 020. [Google Scholar] [CrossRef]
  140. Fei, Q.; Yi, Z.; Yang, Y. The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials. Universe 2020, 6, 213. [Google Scholar] [CrossRef]
  141. Lin, J.; Gao, Q.; Gong, Y.; Lu, Y.; Zhang, C.; Zhang, F. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 2020, 101, 103515. [Google Scholar] [CrossRef]
  142. Lin, J.; Gao, S.; Gong, Y.; Lu, Y.; Wang, Z.; Zhang, F. Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term. Phys. Rev. D 2023, 107, 043517. [Google Scholar] [CrossRef]
  143. Yi, Z.; Zhu, Z.H. Inflationary attractors from a non-canonical kinetic term. arXiv 2021, arXiv:2106.10303. [Google Scholar]
  144. Gao, Q.; Gong, Y.; Yi, Z. Primordial black holes and secondary gravitational waves from natural inflation. Nucl. Phys. B 2021, 969, 115480. [Google Scholar] [CrossRef]
  145. Gao, Q.; Gong, Y.; Yi, Z. On the constant-roll inflation with large and small ηH. Universe 2019, 5, 215. [Google Scholar] [CrossRef]
  146. Gao, Q. Primordial black holes and secondary gravitational waves from chaotic inflation. Sci. China Phys. Mech. Astron. 2021, 64, 280411. [Google Scholar] [CrossRef]
  147. Yi, Z.; Gong, Y.; Wang, B.; Zhu, Z.h. Primordial black holes and secondary gravitational waves from the Higgs field. Phys. Rev. D 2021, 103, 063535. [Google Scholar] [CrossRef]
  148. Yi, Z.; Gao, Q.; Gong, Y.; Zhu, Z.h. Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term. Phys. Rev. D 2021, 103, 063534. [Google Scholar] [CrossRef]
  149. Yi, Z.; Zhu, Z.H. NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field. JCAP 2022, 05, 046. [Google Scholar] [CrossRef]
  150. Yi, Z. Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory. JCAP 2023, 03, 048. [Google Scholar] [CrossRef]
  151. Zhang, F.; Gong, Y.; Lin, J.; Lu, Y.; Yi, Z. Primordial non-Gaussianity from G-inflation. JCAP 2021, 04, 045. [Google Scholar] [CrossRef]
  152. Pi, S.; Zhang, Y.l.; Huang, Q.G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. JCAP 2018, 05, 042. [Google Scholar] [CrossRef]
  153. Kamenshchik, A.Y.; Tronconi, A.; Vardanyan, T.; Venturi, G. Non-Canonical Inflation and Primordial Black Holes Production. Phys. Lett. B 2019, 791, 201–205. [Google Scholar] [CrossRef]
  154. Fu, C.; Wu, P.; Yu, H. Primordial Black Holes from Inflation with Nonminimal Derivative Coupling. Phys. Rev. D 2019, 100, 063532. [Google Scholar] [CrossRef]
  155. Fu, C.; Wu, P.; Yu, H. Scalar induced gravitational waves in inflation with gravitationally enhanced friction. Phys. Rev. D 2020, 101, 023529. [Google Scholar] [CrossRef]
  156. Dalianis, I.; Karydas, S.; Papantonopoulos, E. Generalized Non-Minimal Derivative Coupling: Application to Inflation and Primordial Black Hole Production. JCAP 2020, 06, 040. [Google Scholar] [CrossRef]
  157. Gundhi, A.; Steinwachs, C.F. Scalaron–Higgs inflation reloaded: Higgs-dependent scalaron mass and primordial black hole dark matter. Eur. Phys. J. C 2021, 81, 460. [Google Scholar] [CrossRef]
  158. Cheong, D.Y.; Lee, S.M.; Park, S.C. Primordial black holes in Higgs-R2 inflation as the whole of dark matter. JCAP 2021, 01, 032. [Google Scholar] [CrossRef]
  159. Zhang, F. Primordial black holes and scalar induced gravitational waves from the E model with a Gauss–Bonnet term. Phys. Rev. D 2022, 105, 063539. [Google Scholar] [CrossRef]
  160. Zhang, F.; Lin, J.; Lu, Y. Double-peaked inflation model: Scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity. Phys. Rev. D 2021, 104, 063515, Erratum in Phys. Rev. D 2021, 104, 129902. [Google Scholar] [CrossRef]
  161. Kawai, S.; Kim, J. Primordial black holes from Gauss–Bonnet-corrected single field inflation. Phys. Rev. D 2021, 104, 083545. [Google Scholar] [CrossRef]
  162. Cai, R.G.; Chen, C.; Fu, C. Primordial black holes and stochastic gravitational wave background from inflation with a noncanonical spectator field. Phys. Rev. D 2021, 104, 083537. [Google Scholar] [CrossRef]
  163. Chen, P.; Koh, S.; Tumurtushaa, G. Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity. arXiv 2021, arXiv:2107.08638. [Google Scholar]
  164. Karam, A.; Koivunen, N.; Tomberg, E.; Vaskonen, V.; Veermäe, H. Anatomy of single-field inflationary models for primordial black holes. JCAP 2023, 03, 013. [Google Scholar] [CrossRef]
  165. Ashoorioon, A.; Rostami, A.; Firouzjaee, J.T. EFT compatible PBHs: Effective spawning of the seeds for primordial black holes during inflation. JHEP 2021, 07, 087. [Google Scholar] [CrossRef]
  166. Liu, J.; Gong, Y.; Yi, Z. Constant-roll inflation with non-minimally derivative coupling. arXiv 2024, arXiv:2404.04978. [Google Scholar] [CrossRef]
  167. Dandoy, V.; Domcke, V.; Rompineve, F. Search for scalar induced gravitational waves in the international pulsar timing array data release 2 and NANOgrav 12.5 years datasets. SciPost Phys. Core 2023, 6, 060. [Google Scholar] [CrossRef]
  168. Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
  169. Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
  170. Harigaya, K.; Inomata, K.; Terada, T. Induced gravitational waves with kination era for recent pulsar timing array signals. Phys. Rev. D 2023, 108, 123538. [Google Scholar] [CrossRef]
  171. Kawasaki, M.; Kohri, K.; Sugiyama, N. Cosmological constraints on late time entropy production. Phys. Rev. Lett. 1999, 82, 4168. [Google Scholar] [CrossRef]
  172. Kawasaki, M.; Kohri, K.; Sugiyama, N. MeV scale reheating temperature and thermalization of neutrino background. Phys. Rev. D 2000, 62, 023506. [Google Scholar] [CrossRef]
  173. Hannestad, S. What is the lowest possible reheating temperature? Phys. Rev. D 2004, 70, 043506. [Google Scholar] [CrossRef]
  174. Hasegawa, T.; Hiroshima, N.; Kohri, K.; Hansen, R.S.L.; Tram, T.; Hannestad, S. MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. JCAP 2019, 12, 012. [Google Scholar] [CrossRef]
  175. Ashton, G.; Hübner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divakarla, A.; Easter, P.J.; Goncharov, B.; et al. BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 2019, 241, 27. [Google Scholar] [CrossRef]
  176. Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
  177. Moore, C.J.; Vecchio, A. Ultra-low-frequency gravitational waves from cosmological and astrophysical processes. Nat. Astron. 2021, 5, 1268–1274. [Google Scholar] [CrossRef]
  178. Lamb, W.G.; Taylor, S.R.; van Haasteren, R. Rapid refitting techniques for Bayesian spectral characterization of the gravitational wave background using pulsar timing arrays. Phys. Rev. D 2023, 108, 103019. [Google Scholar] [CrossRef]
  179. Johnson, M.C.; Kamionkowski, M. Dynamical and Gravitational Instability of Oscillating-Field Dark Energy and Dark Matter. Phys. Rev. D 2008, 78, 063010. [Google Scholar] [CrossRef]
  180. Turner, M.S. Coherent Scalar Field Oscillations in an Expanding Universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
  181. Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
  182. Silverstein, E.; Tong, D. Scalar speed limits and cosmology: Acceleration from D-cceleration. Phys. Rev. D 2004, 70, 103505. [Google Scholar] [CrossRef]
  183. Liddle, A.R.; Leach, S.M. How long before the end of inflation were observable perturbations produced? Phys. Rev. D 2003, 68, 103503. [Google Scholar] [CrossRef]
  184. Allahverdi, R.; Brandenberger, R.; Cyr-Racine, F.Y.; Mazumdar, A. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci. 2010, 60, 27–51. [Google Scholar] [CrossRef]
  185. Kofman, L.; Linde, A.D.; Starobinsky, A.A. Reheating after inflation. Phys. Rev. Lett. 1994, 73, 3195–3198. [Google Scholar] [CrossRef] [PubMed]
  186. Kofman, L.; Linde, A.D.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef]
  187. Domènech, G. Induced gravitational waves in a general cosmological background. Int. J. Mod. Phys. D 2020, 29, 2050028. [Google Scholar] [CrossRef]
  188. Dufaux, J.F.; Bergman, A.; Felder, G.N.; Kofman, L.; Uzan, J.P. Theory and Numerics of Gravitational Waves from Preheating after Inflation. Phys. Rev. D 2007, 76, 123517. [Google Scholar] [CrossRef]
Figure 1. This figure presents the posterior probability distributions for the parameters in the primordial curvature power spectrum parameterization, as described in Equation (9), and the reheating temperature. ( T rh ). The diagonal panels show the marginalized one-dimensional posterior distributions for each parameter, while the off-diagonal panels show the two-dimensional joint posterior distributions, revealing the correlations between parameter pairs. The scale k and the corresponding frequency f are related through the expression given in Equation (12). The posterior distributions summarize the probabilistic constraints on these parameters based on the analysis of the available data.
Figure 1. This figure presents the posterior probability distributions for the parameters in the primordial curvature power spectrum parameterization, as described in Equation (9), and the reheating temperature. ( T rh ). The diagonal panels show the marginalized one-dimensional posterior distributions for each parameter, while the off-diagonal panels show the two-dimensional joint posterior distributions, revealing the correlations between parameter pairs. The scale k and the corresponding frequency f are related through the expression given in Equation (12). The posterior distributions summarize the probabilistic constraints on these parameters based on the analysis of the available data.
Universe 10 00251 g001
Figure 2. This figure depicts the energy density of the SIGW for parameter values corresponding to the best-fit values. The blue curve in the middle represents the predicted SIGW energy density spectra based on these best-fit parameter sets; the blue region denotes the 1- σ confidence intervals for the energy density of SIGWs. To provide context, the red violin plots illustrate the energy density estimates of the free spectrum obtained from the NANOGrav 15-year dataset. The width of the violins at each frequency indicates the probability density of the energy density. By comparing the predicted SIGW spectra with the NANOGrav observational constraints, this figure allows for an evaluation of the agreement between the best-fit models and the available data.
Figure 2. This figure depicts the energy density of the SIGW for parameter values corresponding to the best-fit values. The blue curve in the middle represents the predicted SIGW energy density spectra based on these best-fit parameter sets; the blue region denotes the 1- σ confidence intervals for the energy density of SIGWs. To provide context, the red violin plots illustrate the energy density estimates of the free spectrum obtained from the NANOGrav 15-year dataset. The width of the violins at each frequency indicates the probability density of the energy density. By comparing the predicted SIGW spectra with the NANOGrav observational constraints, this figure allows for an evaluation of the agreement between the best-fit models and the available data.
Universe 10 00251 g002
Table 1. Summary of the prior distributions, median posterior values, and 90 % credible interval bounds for the reheating temperature ( T rh ) and the parameters associated with the primordial curvature power spectrum, as described in Equation (9). The priors are represented by uniform distributions, denoted by U . The median posterior values provide the most probable estimates for each parameter, while the credible interval bounds of 90 % indicate the range within which the true parameter values are likely to lie, based on the given data and the assumed model.
Table 1. Summary of the prior distributions, median posterior values, and 90 % credible interval bounds for the reheating temperature ( T rh ) and the parameters associated with the primordial curvature power spectrum, as described in Equation (9). The priors are represented by uniform distributions, denoted by U . The median posterior values provide the most probable estimates for each parameter, while the credible interval bounds of 90 % indicate the range within which the true parameter values are likely to lie, based on the given data and the assumed model.
Parameter log 10 ( f / Hz )     log 10 Δ     log 10 A     log 10 ( T rh / GeV )
prior U ( 10 , 2 ) U ( 6 , 1 ) U ( 5 , 1 ) U ( 10 , 7 )
posterior 6 . 26 1.16 + 1.20 3 . 6 2.2 + 2.3 0 . 28 1.20 + 1.16 0 . 12 1.51 + 0.64
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Fei, Q. Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset. Universe 2024, 10, 251. https://doi.org/10.3390/universe10060251

AMA Style

Fei Q. Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset. Universe. 2024; 10(6):251. https://doi.org/10.3390/universe10060251

Chicago/Turabian Style

Fei, Qin. 2024. "Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset" Universe 10, no. 6: 251. https://doi.org/10.3390/universe10060251

APA Style

Fei, Q. (2024). Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset. Universe, 10(6), 251. https://doi.org/10.3390/universe10060251

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop