Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars
Abstract
:1. Introduction
2. Production Rate of Right-Handed Neutrinos
3. Pulsar Kick Velocity
4. Bound for the Neutrino Magnetic Moment
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abgaryan, V.; Acevedo Kado, R.; Afanasyev, S.V.; Agakishiev, G.N.; Alpatov, E.; Altsybeev, G.; Hernández, M.A.; Andreeva, S.V.; Andreeva, T.V.; Andronov, E.V.; et al. Status and initial physics performance studies of the MPD experiment at NICA. Eur. Phys. J. A 2022, 58, 140. [Google Scholar] [CrossRef]
- Gutierrez, E.; Ahmad, A.; Ayala, A.; Bashir, A.; Raya, A. The QCD phase diagram from Schwinger–Dyson equations. J. Phys. G 2014, 41, 075002. [Google Scholar] [CrossRef]
- Pasztor, A. The QCD phase diagram at finite temperature and density—A lattice perspective. PoS 2024, LATTICE2023, 108. [Google Scholar] [CrossRef]
- Du, L.; Sorensen, A.; Stephanov, M. The QCD phase diagram and Beam Energy Scan physics: A theory overview. arXiv 2024, arXiv:2402.10183. [Google Scholar] [CrossRef]
- Radice, D.; Hawke, I. Turbulence modelling in neutron star merger simulations. Liv. Rev. Comput. Astrophys. 2024, 10, 1. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Strange quark stars: The role of excluded volume effects. Universe 2024, 10, 233. [Google Scholar] [CrossRef]
- Issifu, A.; Menezes, D.P.; Rezaei, Z.; Frederico, T. Proto-neutron stars with quark cores. arXiv 2024, arXiv:2405.10386. [Google Scholar]
- Schramm, S.; Negreiros, R.; Steinheimer, J.; Schurhoff, T.; Dexheimer, V. Properties and Stability of Hybrid Stars. Acta Phys. Polon. B 2012, 43, 749–758. [Google Scholar] [CrossRef]
- Burrows, A.; Vartanyan, D. Core-Collapse Supernova Explosion Theory. Nature 2021, 589, 29–39. [Google Scholar] [CrossRef]
- Boccioli, L.; Roberti, L. The Physics of Core-Collapse Supernovae: Explosion Mechanism and Explosive Nucleosynthesis. Universe 2024, 10, 148. [Google Scholar] [CrossRef]
- Hobbs, G.; Lorimer, D.R.; Lyne, A.G.; Kramer, M. A Statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 2005, 360, 974–992. [Google Scholar] [CrossRef]
- Fukushima, K.; Yu, C. Pulsar Kick by the Chiral Anisotropy Conversion. arXiv 2024, arXiv:2401.04568. [Google Scholar]
- Berdermann, J.; Blaschke, D.; Grigorian, H.; Voskresensky, D.N. Asymmetric neutrino propagation in newly born magnetized strange stars: GRB and kicks. Prog. Part. Nucl. Phys. 2006, 57, 334–342. [Google Scholar] [CrossRef]
- Janka, H.T. Neutron star kicks by the gravitational tug-boat mechanism in asymmetric supernova explosions: Progenitor and explosion dependence. Astrophys. J. 2017, 837, 84. [Google Scholar] [CrossRef]
- Gessner, A.; Janka, H.T. Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova. Astrophys. J. 2018, 865, 61. [Google Scholar] [CrossRef]
- Nordhaus, J.; Brandt, T.D.; Burrows, A.; Livne, E.; Ott, C.D. Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks. Phys. Rev. D 2010, 82, 103016. [Google Scholar] [CrossRef]
- Page, D.; Beznogov, M.V.; Garibay, I.; Lattimer, J.M.; Prakash, M.; Janka, H.T. NS 1987A in SN 1987A. Astrophys. J. 2020, 898, 125. [Google Scholar] [CrossRef]
- Tademaru, E.; Harrison, E.R. Acceleration of pulsars to high velocities by asymmetric radiation. Nature 1975, 254, 676–677. [Google Scholar] [CrossRef]
- Harrison, E.R.; Tademaru, E. Acceleration of pulsars by asymmetric radiation. Astrophys. J. 1975, 201, 447–461. [Google Scholar] [CrossRef]
- Lai, D.; Chernoff, D.F.; Cordes, J.M. Pulsar jets: Implications for neutron star kicks and initial spins. Astrophys. J. 2001, 549, 1111. [Google Scholar] [CrossRef]
- Agalianou, V.; Gourgouliatos, K.N. The rocket effect mechanism in neutron stars in supernova remnants. Mon. Not. R. Astron. Soc. 2023, 522, 5879–5891. [Google Scholar] [CrossRef]
- Gott, J.; Richard, I.; Gunn, J.E.; Ostriker, J.P. Runaway Stars and the Pulsars Near the Crab Nebula. Astrophys. J. Lett. 1970, 160, L91. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Chruslinska, M.; Dorozsmai, A.; Toonen, S. Combined analysis of neutron star natal kicks using proper motions and parallax measurements for radio pulsars and Be X-ray binaries. Mon. Not. R. Astron. Soc. 2021, 508, 3345–3364. [Google Scholar] [CrossRef]
- Wongwathanarat, A.; Janka, H.T.; Mueller, E. Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 2013, 552, A126. [Google Scholar] [CrossRef]
- Sagert, I.; Schaffner-Bielich, J. Pulsar kicks by anisotropic neutrino emission from quark matter in strong magnetic fields. Astron. Astrophys. 2008, 489, 281. [Google Scholar] [CrossRef]
- Fryer, C.L.; Kusenko, A. Effects of neutrino-driven kicks on the supernova explosion mechanism. Astrophys. J. Suppl. 2006, 163, 335. [Google Scholar] [CrossRef]
- Wang, C.; Lai, D.; Han, J. Neutron star kicks in isolated and binary pulsars: Observational constraints and implications for kick mechanisms. Astrophys. J. 2006, 639, 1007–1017. [Google Scholar] [CrossRef]
- Farzan, Y.; Gelmini, G.; Kusenko, A. Pulsar kicks from Majoron emission. Phys. Lett. B 2005, 621, 22–27. [Google Scholar] [CrossRef]
- Lambiase, G.; Poddar, T.K. Pulsar kicks in ultralight dark matter background induced by neutrino oscillation. J. Cosmol. Astropart. Phys. 2024, 1, 69. [Google Scholar] [CrossRef]
- Khokhlov, A.M.; Hoeflich, P.A.; Oran, E.S.; Wheeler, J.C.; Wang, L. Jet-induced explosions of core collapse supernovae. Astrophys. J. Lett. 1999, 524, L107. [Google Scholar] [CrossRef]
- Colpi, M.; Wasserman, I. Formation of an evanescent proto–neutron star binary and the origin of pulsar kicks. Astrophys. J. 2002, 581, 1271–1279. [Google Scholar] [CrossRef]
- Fryer, C.L.; Warren, M.S. The Collapse of rotating massive stars in 3-dimensions. Astrophys. J. 2004, 601, 391–404. [Google Scholar] [CrossRef]
- Janka, H.T. Neutrino Emission from Supernovae. In Handbook of Supernovae; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Sieverding, A.; Martínez-Pinedo, G.; Langanke, K.; Bollig, R.; Janka, H.T.; Heger, A. The ν-process with Fully Time-dependent Supernova Neutrino Emission Spectra. Astrophys. J. 2019, 876, 151. [Google Scholar] [CrossRef]
- Sumiyoshi, K. Supernovae and neutron stars: Playgrounds of dense matter and neutrinos. J. Phys. Conf. Ser. 2017, 861, 012028. [Google Scholar] [CrossRef]
- Keranen, P.; Ouyed, R.; Jaikumar, P. Neutrino emission and mass ejection in quark novae. Astrophys. J. 2004, 618, 485–492. [Google Scholar] [CrossRef]
- Fujikawa, K.; Shrock, R. The Magnetic Moment of a Massive Neutrino and Neutrino Spin Rotation. Phys. Rev. Lett. 1980, 45, 963. [Google Scholar] [CrossRef]
- Alok, A.K.; Singh Chundawat, N.R.; Mandal, A. Cosmic neutrino flux and spin flavor oscillations in intergalactic medium. Phys. Lett. B 2023, 839, 137791. [Google Scholar] [CrossRef]
- Alok, A.K.; Chall, T.J.; Chundawat, N.R.S.; Mandal, A. Spin-flavor oscillations of relic neutrinos in primordial magnetic field. Phys. Rev. D 2024, 109, 055011. [Google Scholar] [CrossRef]
- Ayala, A.; Manreza Paret, D.; Pérez Martínez, A.; Piccinelli, G.; Sánchez, A.; Ruíz Montaño, J.S. Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos. Phys. Rev. D 2018, 97, 103008. [Google Scholar] [CrossRef]
- Kusenko, A.; Segre, G.; Vilenkin, A. Neutrino transport: No asymmetry in equilibrium. Phys. Lett. B 1998, 437, 359–361. [Google Scholar] [CrossRef]
- Ayala, A.; Langarica, S.B.; Hernández-Ortiz, S.; Hernández, L.A.; Manreza-Paret, D. Lower bound for the neutrino magnetic moment from kick velocities induced at the birth of neutron stars. Int. J. Mod. Phys. E 2021, 30, 2150031. [Google Scholar] [CrossRef]
- Ayala, A.; Hernández, L.A.; Loewe, M.; Villavicencio, C. QCD phase diagram in a magnetized medium from the chiral symmetry perspective: The linear sigma model with quarks and the Nambu–Jona-Lasinio model effective descriptions. Eur. Phys. J. A 2021, 57, 234. [Google Scholar] [CrossRef]
- Ayala, A.; D’Olivo, J.C.; Torres, M. Bound on the neutrino magnetic moment from chirality flip in supernovae. Phys. Rev. D 1999, 59, 111901. [Google Scholar] [CrossRef]
- Ayala, A.; D’Olivo, J.C.; Torres, M. Right-handed neutrino production in dense and hot plasmas. Nucl. Phys. B 2000, 564, 204–222. [Google Scholar] [CrossRef]
- Perez Martinez, A.; Perez Rojas, H.; Zepeda, A. Neutrino mass in dense matter. Phys. Lett. B 1996, 366, 235–240. [Google Scholar] [CrossRef]
- Sagert, I.; Schaffner-Bielich, J. Pulsar kicks by anisotropic neutrino emission from quark matter. J. Phys. G 2008, 35, 014062. [Google Scholar] [CrossRef]
- Young, M.D.T.; Chan, L.S.; Burman, R.R.; Blair, D.G. Pulsar magnetic alignment and the pulsewidth-age relation. Mon. Not. R. Astron. Soc. 2010, 402, 1317. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, W.; Manchester, R.N.; Coles, W.A.; Li, D.; Wang, N.; Kramer, M.; Stinebring, D.R.; Feng, Y.; Yan, W.; et al. Evidence for three-dimensional spin-velocity alignment in a pulsar. Nat. Astron. 2021, 5, 788–795. [Google Scholar] [CrossRef]
- Noutsos, A.; Kramer, M.; Carr, P.; Johnston, S. Pulsar Spin–Velocity Alignment: Further Results and Discussion. Mon. Not. R. Astron. Soc. 2012, 423, 2736. [Google Scholar] [CrossRef]
- Pons, J.A.; Reddy, S.; Prakash, M.; Lattimer, J.M.; Miralles, J.A. Evolution of protoneutron stars. Astrophys. J. 1999, 513, 780. [Google Scholar] [CrossRef]
- Page, D.; Geppert, U.; Weber, F. The Cooling of compact stars. Nucl. Phys. A 2006, 777, 497–530. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron stars—Cooling and transport. Space Sci. Rev. 2015, 191, 239–291. [Google Scholar] [CrossRef]
- Schmitt, A.; Shternin, P. Reaction rates and transport in neutron stars. Astrophys. Space Sci. Libr. 2018, 457, 455–574. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Pagliara, G.; Herzog, M.; Röpke, F.K. Combustion of a neutron star into a strange quark star: The neutrino signal. Phys. Rev. D 2013, 87, 103007. [Google Scholar] [CrossRef]
- Witten, E. Cosmic Separation of Phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Alford, M.; Braby, M.; Paris, M.W.; Reddy, S. Hybrid stars that masquerade as neutron stars. Astrophys. J. 2005, 629, 969–978. [Google Scholar] [CrossRef]
- Schramm, S.; Steinheimer, J.; Dexheimer, V.; Mukherjee, A. Modeling Hybrid Stars and Hot Matter. Nucl. Phys. A 2019, 982, 887–890. [Google Scholar] [CrossRef]
- Prakash, M.; Cooke, J.R.; Lattimer, J.M. Quark-hadron phase transition in protoneutron stars. Phys. Rev. D 1995, 52, 661–665. [Google Scholar] [CrossRef]
- Reddy, S.; Prakash, M.; Lattimer, J.M. Neutrino interactions in hot and dense matter. Phys. Rev. D 1998, 58, 013009. [Google Scholar] [CrossRef]
- Ouyed, R. The Macro-Physics of the Quark-Nova: Astrophysical Implications. Universe 2022, 8, 322. [Google Scholar] [CrossRef]
- Balantekin, A.B. Neutrino magnetic moment. AIP Conf. Proc. 2006, 847, 128–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, A.; Bernal-Langarica, S.; Manreza-Paret, D. Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars. Universe 2024, 10, 301. https://doi.org/10.3390/universe10070301
Ayala A, Bernal-Langarica S, Manreza-Paret D. Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars. Universe. 2024; 10(7):301. https://doi.org/10.3390/universe10070301
Chicago/Turabian StyleAyala, Alejandro, Santiago Bernal-Langarica, and Daryel Manreza-Paret. 2024. "Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars" Universe 10, no. 7: 301. https://doi.org/10.3390/universe10070301
APA StyleAyala, A., Bernal-Langarica, S., & Manreza-Paret, D. (2024). Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars. Universe, 10(7), 301. https://doi.org/10.3390/universe10070301