Intermediate Coupling Regime in Dilatonic f(R,T) Inflationary Universe
Abstract
:1. Introduction
2. Cosmology in Dilatonic Gravity
3. Inflation in Dilatonic Gravity
4. Inflationary Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Chibisov, G. Quantum fluctuations and a nonsingular universe. ZhETF Pisma Redaktsiiu 1981, 33, 549–553. [Google Scholar]
- Guth, A.H.; Pi, S.-Y. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 1982, 49, 1110. [Google Scholar] [CrossRef]
- Hawking, S.W. The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 1982, 115, 295–297. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 1982, 117, 175–178. [Google Scholar] [CrossRef]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Class of quintessential inflation models with parameter space consistent with bicep2. Phys. Rev. D 2014, 89, 123513. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Trotta, R.; Vennin, V. The best inflationary models after planck. J. Cosmol. Astropart. Phys. 2014, 2014, 039. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia inflationaris. Phys. Dark Universe 2014, 5, 75–235. [Google Scholar] [CrossRef]
- Geng, C.-Q.; Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Quintessential inflation with canonical and noncanonical scalar fields and planck 2015 results. Phys. Rev. D 2015, 92, 023522. [Google Scholar] [CrossRef]
- Huang, Q.-G.; Wang, K.; Wang, S. Inflation model constraints from data released in 2015. Phys. Rev. D 2016, 93, 103516. [Google Scholar] [CrossRef]
- Linde, A. Particle physics and inflationary cosmology. arXiv 2005, arXiv:hep-th/0503203. [Google Scholar]
- Dolgov, A.; Linde, A.D. Baryon asymmetry in the inflationary universe. Phys. Lett. B 1982, 116, 329–334. [Google Scholar] [CrossRef]
- Abbott, L.F.; Farhi, E.; Wise, M.B. Particle production in the new inflationary cosmology. Phys. Lett. B 1982, 117, 29–33. [Google Scholar] [CrossRef]
- Starobinsky, A. Nonsingular model of the universe with the quantum-gravitational de sitter stage and its observational consequences. In Quantum Gravity; Springer: Berlin/Heidelberg, Germany, 1984; pp. 103–128. [Google Scholar]
- Dolgov, A.; Hansen, S. Equation of motion of a classical scalar field with back reaction of produced particles. Nucl. Phys. B 1999, 548, 408–426. [Google Scholar] [CrossRef]
- Traschen, J.H.; Brandenberger, R.H. Particle production during out-of-equilibrium phase transitions. Phys. Rev. D 1990, 42, 2491. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. f (r) gravity inflation with string-corrected axion dark matter. Phys. Rev. D 2019, 99, 064049. [Google Scholar] [CrossRef]
- Oikonomou, V. Exponential inflation with f (r) gravity. Phys. Rev. D 2018, 97, 064001. [Google Scholar] [CrossRef]
- Kleidis, K.; Oikonomou, V. Scalar field assisted f (r) gravity inflation. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850137. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Constant-roll inflation in f (r) gravity. Class. Quantum Gravity 2017, 34, 245012. [Google Scholar] [CrossRef]
- Zhong, Y.; Sáez-Chillón Gómez, D. Inflation in mimetic f (g) gravity. Symmetry 2018, 10, 170. [Google Scholar] [CrossRef]
- Rezazadeh, K.; Abdolmaleki, A.; Karami, K. Logamediate inflation in f (t) teleparallel gravity. Astrophys. J. 2017, 836, 228. [Google Scholar] [CrossRef]
- Shabani, H.; Farhoudi, M. Cosmological and solar system consequences of f (r, t) gravity models. Phys. Rev. D 2014, 90, 044031. [Google Scholar] [CrossRef]
- Moraes, P.; Sahoo, P. Modeling wormholes in f (r, t) gravity. Phys. Rev. D 2017, 96, 044038. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Santos, J.; Moraes, P.; Sahoo, P. Inflation in f (r, t) gravity. Eur. Phys. J. Plus 2020, 135, 576. [Google Scholar] [CrossRef]
- Santos, J.R.L.; da Costa, S.S.; Santos, R.S. Cosmological models for f(r,t) − Λ (ϕ) gravity. Phys. Dark Univ. 2023, 42, 101356. [Google Scholar] [CrossRef]
- Witten, E. Some properties of o (32) superstrings. Phys. Lett. B 1984, 149, 351–356. [Google Scholar] [CrossRef]
- Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B 1995, 443, 85–126. [Google Scholar] [CrossRef]
- Gasperini, M. Dilatonic interpretation of quintessence? Phys. Rev. D 2001, 64, 043510. [Google Scholar] [CrossRef]
- Gasperini, M.; Piazza, F.; Veneziano, G. Quintessence as a runaway dilaton. Phys. Rev. D 2001, 65, 023508. [Google Scholar] [CrossRef]
- Brito, F.A.; Borges, C.H.; Campos, J.A.; Costa, F.G. Weak coupling regime in dilatonic f (r, t) cosmology. Universe 2024, 10, 134. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.; Nojiri, S.; Odintsov, S.D. f (r, t) gravity. Phys. Rev. D-Part. Fields Gravit. Cosmol. 2011, 84, 024020. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. The string dilation and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; Cruz-Dombriz, A.d.; Houndjo, M.J.S.; Rodrigues, M.E. Sáez-Gómez Dynamics of scalar perturbations f(R,T) gravity. Phys. Rev. D 2013, 87, 103526, Erratum in Phys. Rev. D 2013, 87, 129905. [Google Scholar] [CrossRef]
- Fisher, S.B.; Carlson, E.D. Reexamining f(R,T) gravity. Phys. Rev. D 2019, 100, 064059. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Lobato, R.V.; Moraes, P.H.R.S.; Arbail, J.D.V.; Marinho, R.M., Jr.; Otoniel, E.; Malheiro, M. Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity. Eur. Phys. J. C 2017, 77, 871. [Google Scholar] [CrossRef]
- Ordines, T.M.; Carlson, E.D. Limits on f(R, T) gravity from Earth’s atmosphere. Phys. Rev. D 2019, 99, 104052. [Google Scholar] [CrossRef]
- Fazlollahi, H.R. Holographic dark energy in non-conserved gravity theory. Commun. Theor. Phys. 2024, 76, 4. [Google Scholar] [CrossRef]
- Fazlollahi, H.R. Non-conserved modified gravity theory. Eur. Phys. J. C 2023, 83, 923. [Google Scholar] [CrossRef]
- Bertini, N.R.; Velten, H. Fully conservative f(R,T) gravity and Solar System constraints. Phys. Rev. D 2023, 107, 124005. [Google Scholar] [CrossRef]
- Pretel, J.M.Z.; Jorás, S.E.; Reis, R.R.R.; Arbañil, J.D.V. Neutron stars in f (R, T) gravity with conserved energy-momentum tensor: Hydrostatic equilibrium and asteroseismology. J. Cosmol. Astropart. Phys. 2021, 8, 055. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Santos, S.I.D.; Moraes, P.H.R.S.; Malheiro, M. Strange stars in energy–momentum-conserved f(R, T) gravity. Int. J. Mod. Phys. D 2020, 29, 2050075. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Kara, A.H.; Gadjagboui, B. On symmetries and conservation laws of some spacetimes in f(R,T) gravity. Mod. Phys. Lett. A 2019, 34, 1975003. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. The f(R, Tϕ) gravity models with conservation of energy–momentum tensor. Eur. Phys. J. C 2018, 78, 564. [Google Scholar]
- Lobato, R.V.; Carvalho, G.A.; Martins, A.G.; Moraes, P.H.R.S. Energy nonconservation as a link between f(R, T) gravity and noncommutative quantum theory. Eur. Phys. J. Plus 2019, 134, 132. [Google Scholar] [CrossRef]
- Santos, S.I.D.; Carvalho, G.A.; Moraes, P.H.R.S.; Lenzi, C.H.; Malheiro, M. A conservative energy-momentum tensor in the f(R, T) gravity and its implications for the phenomenology of neutron stars. Eur. Phys. J. Plus. 2019, 134, 398. [Google Scholar] [CrossRef]
- Shabani, H.; Ziaie, A.H. Interpretation of f(R,T) gravity in terms of a conserved effective fluid. Int. J. Mod. Phys. A 2018, 33, 1850050. [Google Scholar] [CrossRef]
- Shabani, H.; Ziaie, A.H. Consequences of energy conservation violation: Late time solutions of Λ(T)CDM subclass of f(R,T) gravity using dynamical system approach. Eur. Phys. J. C 2017, 77, 282. [Google Scholar] [CrossRef]
- Gasperini, M.; Veneziano, G. The pre-big bang scenario in string cosmology. Phys. Rep. 2003, 373, 1–212. [Google Scholar] [CrossRef]
- Gasperini, M. Dilaton cosmology and phenomenology. In String Theory and Fundamental Interactions: Gabriele Veneziano and Theoretical Physics: Historical and Contemporary Perspectives; Springer: Berlin/Heidelberg, Germany, 2008; pp. 787–844. [Google Scholar]
- Linde, A.D. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Coleman, S.; Weinberg, E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888. [Google Scholar] [CrossRef]
- Belinsky, V.; Khalatnikov, I.; Grishchuk, L.; Zeldovich, Y.B. Inflationary Stages in Cosmological Models with a Scalar Field. Tech. Rep., International Centre for Theoretical Physics. 1985. Available online: https://inis.iaea.org/records/gxtfj-ses31 (accessed on 4 February 2025).
- Peebles, P.; Ratra, B. Cosmology with a time-variable cosmological’constant’. Astrophys. J. 1988, 325, L17–L20. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Wetterich, C. The cosmon model for an asymptotically vanishing time-dependent cosmological“constant”. arXiv 1994, arXiv:hep-th/9408025. [Google Scholar]
- Ferreira, P.G.; Joyce, M. Cosmology with a primordial scaling field. Phys. Rev. D 1998, 58, 023503. [Google Scholar] [CrossRef]
- Lucchin, F.; Matarrese, S. Power-law inflation. Phys. Rev. D 1985, 32, 1316. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341–344. [Google Scholar] [CrossRef]
- Wetterich, C. Kaluza-klein cosmology and the inflationary universe. Nucl. Phys. B 1985, 252, 309–320. [Google Scholar] [CrossRef]
- Shafi, Q.; Wetterich, C. Inflation with higher dimensional gravity. Phys. Lett. B 1985, 152, 51–55. [Google Scholar] [CrossRef]
- Alcaniz, J.S.; Carvalho, F. β-exponential inflation. Europhys. Lett. 2007, 79, 39001. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1968; Volume 55. [Google Scholar]
- Lima, J.; Silva, R.; Plastino, A. Nonextensive thermostatistics and the h theorem. Phys. Rev. Lett. 2001, 86, 2938. [Google Scholar] [CrossRef] [PubMed]
- Benisty, D.; Guendelman, E.I.; Saridakis, E.N. The scale factor potential approach to inflation. Eur. Phys. J. C 2020, 80, 480. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lyth, D.H.; Riotto, A. Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 1999, 314, 1–146. [Google Scholar] [CrossRef]
- Santos, M.; Benetti, M.; Alcaniz, J.; Brito, F.; Silva, R. Cmb constraints on β-exponential inflationary models. J. Cosmol. Astropart. Phys. 2018, 2018, 023. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results-x. constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Ade, P.A.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.B.; Bischoff, C.; Beck, D.; Bock, J.; Boenish, H.; Bullock, E.; et al. Improved constraints on primordial gravitational waves using planck, wmap, and bicep/keck observations through the 2018 observing season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Tristram, M.; Banday, A.J.; Górski, K.M.; Keskitalo, R.; Lawrence, C.R.; Andersen, K.J.; Barreiro, R.B.; Borrill, J.; Colombo, L.P.L.; Eriksen, H.K.; et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck data. Phys. Rev. D 2022, 105, 083524. [Google Scholar] [CrossRef]
- Santos, F.B.M.D.; da Costa, S.S.; Silva, R.; Benetti, M.; Alcaniz, J. Constraining non-minimally coupled β-exponential inflation with CMB data. J. Cosmol. Astropart. Phys. 2022, 2022, 001. [Google Scholar] [CrossRef]
and | and | |||||||
---|---|---|---|---|---|---|---|---|
0.97551 | 0.036281 | 0.96907 | 0.027086 | 0.97551 | 0.036281 | 0.97277 | 0.032546 | |
0.97634 | 0.029575 | 0.97123 | 0.019479 | 0.97634 | 0.029575 | 0.97275 | 0.023523 | |
0.97671 | 0.026622 | 0.97247 | 0.017087 | 0.97671 | 0.026622 | 0.97335 | 0.020223 | |
0.97725 | 0.022191 | 0.97414 | 0.014311 | 0.97725 | 0.022191 | 0.97459 | 0.016314 | |
0.97759 | 0.019488 | 0.97499 | 0.012928 | 0.97759 | 0.019488 | 0.97535 | 0.014426 |
0.96950 | 0.033537 | 0.97274 | 0.037130 | 0.97440 | 0.039341 | 0.97489 | 0.039717 | |
0.97009 | 0.022558 | 0.97189 | 0.026011 | 0.97395 | 0.030277 | 0.97535 | 0.031291 | |
0.97212 | 0.017431 | 0.97282 | 0.019737 | 0.97317 | 0.023815 | 0.97522 | 0.025328 | |
0.97527 | 0.012000 | 0.97551 | 0.012902 | 0.97341 | 0.013908 | 0.97494 | 0.015281 | |
r | r | r | r | |||||
0.96657 | 0.035820 | 0.96629 | 0.044100 | 0.96406 | 0.053499 | 0.96896 | 0.061721 | |
0.97449 | 0.019523 | 0.97454 | 0.020953 | 0.97155 | 0.019428 | 0.97213 | 0.022190 | |
0.97529 | 0.017192 | 0.97539 | 0.018228 | 0.97303 | 0.016015 | 0.97345 | 0.017890 | |
0.97600 | 0.014816 | 0.97615 | 0.015552 | 0.97421 | 0.013200 | 0.97458 | 0.014474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, F.A.; Borges, C.H.A.B.; Campos, J.A.V.; Costa, F.G. Intermediate Coupling Regime in Dilatonic f(R,T) Inflationary Universe. Universe 2025, 11, 65. https://doi.org/10.3390/universe11020065
Brito FA, Borges CHAB, Campos JAV, Costa FG. Intermediate Coupling Regime in Dilatonic f(R,T) Inflationary Universe. Universe. 2025; 11(2):65. https://doi.org/10.3390/universe11020065
Chicago/Turabian StyleBrito, Francisco A., Carlos H. A. B. Borges, Jose A. V. Campos, and Francisco G. Costa. 2025. "Intermediate Coupling Regime in Dilatonic f(R,T) Inflationary Universe" Universe 11, no. 2: 65. https://doi.org/10.3390/universe11020065
APA StyleBrito, F. A., Borges, C. H. A. B., Campos, J. A. V., & Costa, F. G. (2025). Intermediate Coupling Regime in Dilatonic f(R,T) Inflationary Universe. Universe, 11(2), 65. https://doi.org/10.3390/universe11020065