Scanning the Universe for Large-Scale Structures Using Gamma-Ray Bursts
Abstract
:1. Introduction
2. Data and Methods
2.1. Redshift and Angular Distributions
2.2. Analysis Method
3. The Northern Hemisphere GRB Distribution
4. Differences Between the North and South Celestial Hemispheres
5. Discussion
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | Published by the Caltech Astronomy Department: http://sites.astro.caltech.edu/grbox/grbox.php (accessed on 15 January 2024). |
2 | https://www.mpe.mpg.de/~jcg/grbgen.html (accessed on 15 January 2024). |
References
- Pe’er, A. Physics of Gamma-Ray Bursts Prompt Emission. Adv. Astron. 2015, 2015, 907321. [Google Scholar] [CrossRef]
- Zhang, B. The Physics of Gamma-Ray Bursts; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Bošnjak, Ž.; Barniol Duran, R.; Pe’er, A. The GRB Prompt Emission: An Unsolved Puzzle. Galaxies 2022, 10, 38. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 1993, 405, 273–277. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Ann. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef]
- Berger, E. Short-Duration Gamma-Ray Bursts. Ann. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef]
- Melandri, A.; Bernardini, M.G.; D’Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; et al. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study. Astron. Astrophys. 2015, 581, A86. [Google Scholar] [CrossRef]
- Salvaterra, R.; Valle, M.D.; Campana, S.; Chincarini, G.; Covino, S.; D’Avanzo, P.; Fernández-Soto, A.; Guidorzi, C.; Mannucci, F.; Margutti, R.; et al. GRB090423 at a redshift of z ≈ 8.1. Nature 2009, 461, 1258–1260. [Google Scholar] [CrossRef] [PubMed]
- Iye, M.; Ota, K.; Kashikawa, N.; Furusawa, H.; Hashimoto, T.; Hattori, T.; Matsuda, Y.; Morokuma, T.; Ouchi, M.; Shimasaku, K. A galaxy at a redshift z = 6.96. Nature 2006, 443, 186–188. [Google Scholar] [CrossRef]
- Meszaros, P. Gamma-ray bursts. Rep. Prog. Phys. 2006, 69, 2259–2322. [Google Scholar] [CrossRef]
- Andrade, U.; Bengaly, C.A.P.; Alcaniz, J.S.; Capozziello, S. Revisiting the statistical isotropy of GRB sky distribution. Mon. Not. R. Astron. Soc. 2019, 490, 4481–4488. [Google Scholar] [CrossRef]
- Horvath, I.; Szécsi, D.; Hakkila, J.; Szabó, Á.; Racz, I.I.; Tóth, L.V.; Pinter, S.; Bagoly, Z. The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: The largest structure in the Universe? Mon. Not. R. Astron. Soc. 2020, 498, 2544–2553. [Google Scholar] [CrossRef]
- Tugay, A.; Tarnopolski, M. Continuous Filament Network of the Local Universe. Astrophys. J. 2023, 952, 3. [Google Scholar] [CrossRef]
- Bargiacchi, G.; Dainotti, M.G.; Nagataki, S.; Capozziello, S. Gamma-ray bursts, quasars, baryonic acoustic oscillations, and supernovae Ia: New statistical insights and cosmological constraints. Mon. Not. R. Astron. Soc. 2023, 521, 3909–3924. [Google Scholar] [CrossRef]
- Wang, H.; Liang, N. Constraints from Fermi observations of long gamma-ray bursts on cosmological parameters. Mon. Not. R. Astron. Soc. 2024, 533, 743–755. [Google Scholar] [CrossRef]
- Dainotti, M.G.; De Simone, B.; Mohideen Malik, R.F.; Pasumarti, V.; Levine, D.; Saha, N.; Gendre, B.; Kido, D.; Watson, A.M.; Becerra, R.L.; et al. An optical gamma-ray burst catalogue with measured redshift—I. Data release of 535 gamma-ray bursts and colour evolution. Mon. Not. R. Astron. Soc. 2024, 533, 4023–4043. [Google Scholar] [CrossRef]
- Briggs, M.S.; Paciesas, W.S.; Pendleton, G.N.; Meegan, C.A.; Fishman, G.J.; Horack, J.M.; Brock, M.N.; Kouveliotou, C.; Hartmann, D.H.; Hakkila, J. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts. Astrophys. J. 1996, 459, 40. [Google Scholar] [CrossRef]
- Tarnopolski, M. Analysis of gamma-ray burst duration distribution using mixtures of skewed distributions. Mon. Not. R. Astron. Soc. 2016, 458, 2024–2031. [Google Scholar] [CrossRef]
- Tarnopolski, M. Analysis of the Duration-Hardness Ratio Plane of Gamma-Ray Bursts Using Skewed Distributions. Astrophys. J. 2019, 870, 105. [Google Scholar] [CrossRef]
- Řípa, J.; Shafieloo, A. Update on testing the isotropy of the properties of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2019, 486, 3027–3040. [Google Scholar] [CrossRef]
- Tarnopolski, M. Graph-based clustering of gamma-ray bursts. Astron. Astrophys. 2022, 657, A13. [Google Scholar] [CrossRef]
- Balázs, L.G.; Mészáros, A.; Horváth, I.; Vavrek, R. An intrinsic anisotropy in the angular distribution of gamma-ray bursts. Astron. Astrophys. Suppl. Ser. 1999, 138, 417–418. [Google Scholar] [CrossRef]
- Mészáros, A.; Bagoly, Z.; Horváth, I.; Balázs, L.G.; Vavrek, R. A Remarkable Angular Distribution of the Intermediate Subclass of Gamma-Ray Bursts. Astrophys. J. 2000, 539, 98–101. [Google Scholar] [CrossRef]
- Magliocchetti, M.; Ghirlanda, G.; Celotti, A. Evidence for anisotropy in the distribution of short-lived gamma-ray bursts. Mon. Not. R. Astron. Soc. 2003, 343, 255–258. [Google Scholar] [CrossRef]
- Vavrek, R.; Balázs, L.G.; Mészáros, A.; Horváth, I.; Bagoly, Z. Testing the randomness in the sky-distribution of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2008, 391, 1741–1748. [Google Scholar] [CrossRef]
- Řípa, J.; Shafieloo, A. Testing the Isotropic Universe Using the Gamma-Ray Burst Data ofFermi/GBM. Astrophys. J. 2017, 851, 15. [Google Scholar] [CrossRef]
- Haslbauer, M.; Kroupa, P.; Jerabkova, T. The cosmological star formation history from the Local Cosmological Volume of galaxies and constraints on the matter homogeneity. Mon. Not. R. Astron. Soc. 2023, 524, 3252–3262. [Google Scholar] [CrossRef]
- Kumar Aluri, P.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Lopez, A.M.; Liu, L.; Martens, N.C.M.; et al. Is the observable Universe consistent with the cosmological principle? Class. Quantum Gravity 2023, 40, 094001. [Google Scholar] [CrossRef]
- Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; in’t Zand, J.; Fiore, F.; Cinti, M.N.; Dal Fiume, D.; Nicastro, L.; Orlandini, M.; et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 1997, 387, 783–785. [Google Scholar] [CrossRef]
- Yadav, J.K.; Bagla, J.S.; Khandai, N. Fractal dimension as a measure of the scale of homogeneity. Mon. Not. R. Astron. Soc. 2010, 405, 2009–2015. [Google Scholar] [CrossRef]
- Gott, J.R., III; Jurić, M.; Schlegel, D.; Hoyle, F.; Vogeley, M.; Tegmark, M.; Bahcall, N.; Brinkmann, J. A Map of the Universe. Astrophys. J. 2005, 624, 463–484. [Google Scholar] [CrossRef]
- Pomarède, D.; Tully, R.B.; Graziani, R.; Courtois, H.M.; Hoffman, Y.; Lezmy, J. Cosmicflows-3: The South Pole Wall. Astrophys. J. 2020, 897, 133. [Google Scholar] [CrossRef]
- Shimakawa, R.; Okabe, N.; Shirasaki, M.; Tanaka, M. King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at z = 0.55 using the subaru hyper suprime-cam. Mon. Not. R. Astron. Soc. 2023, 519, L45–L50. [Google Scholar] [CrossRef]
- Clowes, R.G.; Campusano, L.E. A 100–200 Mpc group of quasars. Mon. Not. R. Astron. Soc. 1991, 249, 218–226. [Google Scholar] [CrossRef]
- Clowes, R.G.; Campusano, L.E.; Graham, M.J.; Söchting, I.K. Two close large quasar groups of size ∼ 350 Mpc at z ∼ 1.2. Mon. Not. R. Astron. Soc. 2012, 419, 556–565. [Google Scholar] [CrossRef]
- Clowes, R.G.; Harris, K.A.; Raghunathan, S.; Campusano, L.E.; Söchting, I.K.; Graham, M.J. A structure in the early Universe at z~1.3 that exceeds the homogeneity scale of the R-W concordance cosmology. Mon. Not. R. Astron. Soc. 2013, 429, 2910–2916. [Google Scholar] [CrossRef]
- Lopez, A.M.; Clowes, R.G.; Williger, G.M. A Giant Arc on the Sky. Mon. Not. R. Astron. Soc. 2022, 516, 1557–1572. [Google Scholar] [CrossRef]
- Lopez, A.M.; Clowes, R.G.; Williger, G.M. A Big Ring on the sky. J. Cosmol. Astropart. Phys. 2024, 2024, 055. [Google Scholar] [CrossRef]
- Balázs, L.G.; Bagoly, Z.; Hakkila, J.E.; Horváth, I.; Kóbori, J.; Rácz, I.I.; Tóth, L.V. A giant ring-like structure at 0.78 <z> 0.86 displayed by GRBs. Mon. Not. R. Astron. Soc. 2015, 452, 2236–2246. [Google Scholar] [CrossRef]
- Balázs, L.G.; Rejtő, L.; Tusnády, G. Some statistical remarks on the giant GRB ring. Mon. Not. R. Astron. Soc. 2018, 473, 3169–3179. [Google Scholar] [CrossRef]
- Horváth, I.; Hakkila, J.; Bagoly, Z. Possible structure in the GRB sky distribution at redshift two. Astron. Astrophys. 2014, 561, L12. [Google Scholar] [CrossRef]
- Horváth, I.; Bagoly, Z.; Hakkila, J.; Tóth, L.V. New data support the existence of the Hercules-Corona Borealis Great Wall. Astron. Astrophys. 2015, 584, A48. [Google Scholar] [CrossRef]
- Li, M.H.; Lin, H.N. Testing the homogeneity of the Universe using gamma-ray bursts. Astron. Astrophys. 2015, 582, A111. [Google Scholar] [CrossRef]
- Mandarakas, N.; Blinov, D.; Casadio, C.; Pelgrims, V.; Kiehlmann, S.; Pavlidou, V.; Tassis, K. Local alignments of parsec-scale AGN radiojets. Astron. Astrophys. 2021, 653, A123. [Google Scholar] [CrossRef]
- Marchã, M.J.M.; Browne, I.W.A. Large-scale clustering amongst Fermi blazars; evidence for axis alignments? Mon. Not. R. Astron. Soc. 2021, 507, 1361–1368. [Google Scholar] [CrossRef]
- Migkas, K.; Pacaud, F.; Schellenberger, G.; Erler, J.; Nguyen-Dang, N.T.; Reiprich, T.H.; Ramos-Ceja, M.E.; Lovisari, L. Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astron. Astrophys. 2021, 649, A151. [Google Scholar] [CrossRef]
- Fujii, H. Large-scale Homogeneity in the distribution of Quasars in the Hercules-Corona Borealis Great Wall Region. Serbian Astron. J. 2022, 204, 29–38. [Google Scholar] [CrossRef]
- Horvath, I.; Bagoly, Z.; Balazs, L.G.; Hakkila, J.; Horvath, Z.; Joo, A.P.; Pinter, S.; Tóth, L.V.; Veres, P.; Racz, I.I. Mapping the Universe with gamma-ray bursts. Mon. Not. R. Astron. Soc. 2024, 527, 7191–7202. [Google Scholar] [CrossRef]
- Horvath, I.; Racz, I.I.; Bagoly, Z.; Balázs, L.G.; Pinter, S. Does the GRB Duration Depend on Redshift? Universe 2022, 8, 221. [Google Scholar] [CrossRef]
- Bagoly, Z.; Horvath, I.; Racz, I.I.; Balázs, L.G.; Tóth, L.V. The Spatial Distribution of Gamma-Ray Bursts with Measured Redshifts from 24 Years of Observation. Universe 2022, 8, 342. [Google Scholar] [CrossRef]
- Lan, G.X.; Wei, J.J.; Zeng, H.D.; Li, Y.; Wu, X.F. Revisiting the luminosity and redshift distributions of long gamma-ray bursts. Mon. Not. R. Astron. Soc. 2021, 508, 52–68. [Google Scholar] [CrossRef]
- Lin, H.N.; Li, X.; Wang, S.; Chang, Z. Are long gamma-ray bursts standard candles? Mon. Not. R. Astron. Soc. 2015, 453, 128–132. [Google Scholar] [CrossRef]
- Fana Dirirsa, F.; Razzaque, S.; Piron, F.; Arimoto, M.; Axelsson, M.; Kocevski, D.; Longo, F.; Ohno, M.; Zhu, S. Spectral Analysis of Fermi-LAT Gamma-Ray Bursts with Known Redshift and their Potential Use as Cosmological Standard Candles. Astrophys. J. 2019, 887, 13. [Google Scholar] [CrossRef]
- Li, J.L.; Yang, Y.P.; Yi, S.X.; Hu, J.P.; Qu, Y.K.; Wang, F.Y. Standardizing the gamma-ray burst as a standard candle and applying it to cosmological probes: Constraints on the two-component dark energy model. Astron. Astrophys. 2024, 689, A165. [Google Scholar] [CrossRef]
- Jakobsson, P.; Chapman, R.; Hjorth, J.; Malesani, D.; Fynbo, J.P.U.; Milvang-Jensen, B.; Kruhler, T.; Tanvir, N.R. The Redshift Distribution of the TOUGH Survey. arXiv 2013, arXiv:1309.3988. [Google Scholar] [CrossRef]
- Racz, I.I.; Balazs, L.G.; Horvath, I. Redshift dependence of GRBs’ observed parameters. Contrib. Astron. Obs. Skaln. Pleso 2023, 53, 115–126. [Google Scholar] [CrossRef]
- Górski, K.M.; Hivon, E.; Banday, A.J.; Wandelt, B.D.; Hansen, F.K.; Reinecke, M.; Bartelmann, M. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J. 2005, 622, 759–771. [Google Scholar] [CrossRef]
- Eingorn, M. First-order Cosmological Perturbations Engendered by Point-like Masses. Astrophys. J. 2016, 825, 84. [Google Scholar] [CrossRef]
- Rácz, I.I.; Balázs, L.G.; Bagoly, Z.; Tóth, L.V.; Horváth, I. Relationship between the large scale structure of the universe and spatial distribution of GRBs. AIP Conf. Proc. 2017, 1792, 060012. [Google Scholar] [CrossRef]
- Moreno, J.; Torrey, P.; Ellison, S.L.; Patton, D.R.; Hopkins, P.F.; Bueno, M.; Hayward, C.C.; Narayanan, D.; Kereš, D.; Bluck, A.F.L.; et al. Interacting galaxies on FIRE-2: The connection between enhanced star formation and interstellar gas content. Mon. Not. R. Astron. Soc. 2019, 485, 1320–1338. [Google Scholar] [CrossRef]
- Tröster, T.; Sánchez, A.G.; Asgari, M.; Blake, C.; Crocce, M.; Heymans, C.; Hildebrandt, H.; Joachimi, B.; Joudaki, S.; Kannawadi, A.; et al. Cosmology from large-scale structure. Constraining ΛCDM with BOSS. Astron. Astrophys. 2020, 633, L10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Bagoly, Z.; Balazs, L.G.; Hakkila, J.; Koncz, B.; Racz, I.I.; Veres, P.; Pinter, S. Scanning the Universe for Large-Scale Structures Using Gamma-Ray Bursts. Universe 2025, 11, 121. https://doi.org/10.3390/universe11040121
Horvath I, Bagoly Z, Balazs LG, Hakkila J, Koncz B, Racz II, Veres P, Pinter S. Scanning the Universe for Large-Scale Structures Using Gamma-Ray Bursts. Universe. 2025; 11(4):121. https://doi.org/10.3390/universe11040121
Chicago/Turabian StyleHorvath, Istvan, Zsolt Bagoly, Lajos G. Balazs, Jon Hakkila, Bendeguz Koncz, Istvan I. Racz, Peter Veres, and Sandor Pinter. 2025. "Scanning the Universe for Large-Scale Structures Using Gamma-Ray Bursts" Universe 11, no. 4: 121. https://doi.org/10.3390/universe11040121
APA StyleHorvath, I., Bagoly, Z., Balazs, L. G., Hakkila, J., Koncz, B., Racz, I. I., Veres, P., & Pinter, S. (2025). Scanning the Universe for Large-Scale Structures Using Gamma-Ray Bursts. Universe, 11(4), 121. https://doi.org/10.3390/universe11040121