Next Article in Journal
Toward the Alleviation of the H0 Tension in Myrzakulov f(R,T) Gravity
Previous Article in Journal
Towards Relational Foundations for Spacetime Quantum Physics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Opinion

Pyknons: A Suggestion for Rebranding Black Holes

Ministero dell’ Istruzione e del Merito, Viale Unità di Italia 68, I-70125 Bari, Italy
Universe 2025, 11(8), 251; https://doi.org/10.3390/universe11080251
Submission received: 17 March 2025 / Revised: 17 April 2025 / Accepted: 25 July 2025 / Published: 29 July 2025
(This article belongs to the Section Gravitation)

Abstract

‘Black hole’ is the denomination of the most extreme prediction of the General Theory of Relativity made popular by J. A. Wheeler in the late sixties of the twentieth century, having now entered widely into the collective imagination. Nonetheless, the term is somewhat misleading since there is nothing that tears apart in black holes, which, furthermore, are not even black. Thus, the new name pyknons, from the ancient Greek word for ‘compact; constricted; close-packed’, is proposed for them since it captures a key distinctive feature of theirs. In deference to the objects thus renamed, it also has the merit of introducing a greater compactness in the terms denoting them.

1. Introduction

The most intriguing prediction of the classical, i.e., non-quantum, gravitational theory of Einstein is that it allows the existence of unidirectional regions in spacetime, which are causally disconnected from the rest of it due to their extreme curvature. Not bounded by any material surface, they are the so-called ‘black holes’ [1,2,3], according to a quite fortunate but somehow misleading and, strictly speaking, incorrect naming popularized by the physicist J. A. Wheeler in the late sixties of the past century [4].
Initially regarded just as mere mathematical curiosities, if not even artifacts deprived of any physical meaning1, their actual existence in the real world started to gain credibility when a realistic physical mechanism able to unavoidably produce gravitationally, completely collapsed objects of stellar size was devised [6]. Originally limited just to the unphysical situation that saw only a non-rotating and perfectly spherical object completely collapse, such a fate was later proved to be an unexcapable outcome irrespectively of the departures from the spherically symmetry of the contracting body [7]. In this picture, a black hole forms when a star shrinks so much that it becomes smaller than a certain size proportional to its mass. In this respect, a black hole is an extremely compact object since the aforementioned threshold usually amounts to just a few kilometers for solar mass stars. Absent in the Newtonian gravitational theory, such a sort of characteristic gravitational radius represents a truly watershed for the motion of massive particle and light rays whose trajectories dramatically change according to whether they penetrate the spatial region delimited by it2. Indeed, after having trespassed it, they cannot come back anymore, doomed to proceed towards an ubiquitous spacetime singularity, which looms inexorably in their future everywhere [8,9,10].
Later, black holes of stellar size became the subject of intensive astrophysical research after the discovery of their first candidate Cyg X-1 [11]. The recent detection in dedicated Earth-based facilities of a kind of high-frequency gravitational waves that could only be emitted by inspiralling binary black holes of some tens of solar masses further strengthened our confidence in their actual existence [12,13].
A further fundamental step towards the acceptance of this theoretical concept as something physically real was made when extraordinarily heavy black holes, with masses ranging from a million to even tens of billions of solar masses [14], were hypothesized to explain extremely energetic phenomena occurring in several active galactic nuclei; for an overview, see, e.g., [15], and references therein. To this aim, it should be recalled that the need for extreme gravitational objects at the centers of galaxies in order to explain extragalactic radio sources was recognized for the first time by Ambartsumian in the mid-1950s [16,17]. In fact, Ambartsumian postulated the explosion of alleged superdense material objects also in later works [18], as reported in [19]; thus, he was not credited for the modern conception of an active galaxy. Lynden-Bell and Rees [20,21] interpreted it in terms of giant black holes surrounded by a magnetized accretion disk; see the recollection in [19]. Despite this, it is still unclear how such monsters could actually come into being [22]. Trust in their reality as physical objects was greatly enhanced after the discovery of the cluster of S stars revolving about a directly unseen, extremely compact region in the Galactic Centre at Sgr A* [23]. Furthermore, the recently imaged black holes’ shadows cast on the electromagnetic emission from material accretion disks in the centers of both our galaxy [24] and M87 [25], after a long gestation [26,27,28], strongly supported the existence of such peculiar astrophysical massive compact objects. A further confirmation of their existence seems to have been recently obtained from the detection of very low-frequency gravitational wave background attributed to the merger of supermassive black hole binaries [29,30].
Quantum considerations led to the introduction of the, so far, hypothetical thermal emission of black holes [31,32,33] along with the concept of temperature and entropy for them [34,35]. One of the most relevant consequences of such quantum features of black holes is the information paradox and the many attempts to resolve it [36,37].
Remarkably, despite their ubiquity in an increasing number of areas in theoretical physics and astrophysics, there is still a lack of a universally accepted definition of black holes [38].
From the above summary considerations, it is clear that a black hole is, in fact, neither a ‘hole’ in something nor is it really ‘black’. Thus, in the next section, a different, more accurate name that unambiguously captures a distinctive feature of black holes, common to all scales and theoretical frameworks, is suggested, although, perhaps, less suggestive from the point of view of mass media. The property one is talking about here about is compactness in the sense of Buchdal’s theorem3 [40]. According to this theory, the compactness of a self-gravitating, isotropic, spherically symmetric, perfect fluid material body of mass M and radius R, defined as C : = G M / R c 2 , where G is the Newtonian constant of universal gravitation and c is the speed of light in a vacuum, satisfies the following condition: C 4 / 9 0.44 . On the other hand, a Schwarzschild black hole characterized by a Schwarzschild radius of R = 2 G M / c 2 has the largest possible compactness, amounting to C = 1 / 2 = 0.5 .

2. A New Name for Black Holes

In principle, a better noun for denoting a black hole is pyknon. It may be thought to be derived from the neuter nominative singular of the ancient Greek adjective4  π υ κ ν ó ς , η ´ , −ó ν (pyknós, -h e ¯ ´ , -ón), meaning, i.a., ‘close, compact; narrow, constricted; close-packed, crowded’. Thus, the plural form may be chosen as pyknons or, more formally, pykna. As a consequence, a supermassive black hole may be conveniently dubbed as megapyknon, with a considerable gain in conciseness. Indeed, while the noun ‘black hole’ consists of two distinct words for a total of nine characters, ‘pyknon’ is a single word formed by only six characters, to say nothing of the three distinct words forming ‘supermassive black hole’ for a staggering total of twenty-one characters, compared to just the ten characters that make up ‘megapyknon’. As a by-product, the points of closest and farthest approach may be dubbed in the traditional way as peripyknon and apopyknon, respectively, from the ancient Greek prepositions π ϵ ρ ι ´ (perí), meaning ‘around, about’, and ἀ π ó (apó) and ‘from, away from, far from’.
Another possible choice may be pyknoma, from the nominative singular of the ancient Greek neuter noun5  π υ ´ κ ν ω μ α , α τ o ς , τ ó (pýknōma, -atos, ), meaning, i.a., ‘dense mass, concentration’. In this case, the plural form may be pyknomas or, more formally, pyknomata. Even in this case, there would be a saving of characters compared to the traditional denominations, although less notable.

3. Summary and Conclusions

Since a black hole is neither a tear in anything nor black, the noun pyknon, from the ancient Greek word for ‘compact; constricted; close-packed’ is proposed for it. It captures an essential and unquestioned feature of such a general relativistic prediction that is found in any theoretical scheme and that is also common to every other possible alternative to it [41] for which wordy expressions like ‘alternative compact objects’ or ‘black hole mimickers’ are commonly used. Last but not least, the present suggestion would also lead to more concise terms, sparing a significant number of characters, especially as far as a supermassive black hole, now named megapyknon, are concerned: a compact name for the most compact objects existing in nature.

Funding

This research received no external funding.

Data Availability Statement

No new data were generated or analyzed in support of this research.

Conflicts of Interest

The author declares no conflicts of interest.

Notes

1
Suffice it to say that Einstein himself was erroneously convinced that any mass distribution could not be arbitrarily concentrated [5].
2
Instead, in Newtonian gravity, a conic section remains a conic section regardless of how close the center of attraction is.
3
For generalizations to different material sources, see [39].
4
See http://logeion.uchicago.edu, URL consulted on 6 March 2025.
5
See http://logeion.uchicago.edu, URL consulted on 6 March 2025.

References

  1. Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
  2. Ruffini, R.; Wheeler, J.A. Introducing the black hole. Phys. Today 2009, 62, 47–53. [Google Scholar] [CrossRef]
  3. Grumiller, D.; Sheikh-Jabbari, M. Black Hole Physics. From Collapse to Evaporation; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
  4. Wheeler, J.A.; Ford, K. Geons, Black Holes and Quantum Foam: A Life in Physics; Norton: New York, NY, USA, 1998. [Google Scholar]
  5. Einstein, A. On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses. Ann. Math. 1939, 40, 922. [Google Scholar] [CrossRef]
  6. Oppenheimer, J.R.; Snyder, H. On Continued Gravitational Contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef]
  7. Hawking, S.W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. R. Soc. Lond. Ser. A 1970, 314, 529–548. [Google Scholar] [CrossRef]
  8. Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
  9. Landsman, K. Singularities, Black Holes, and Cosmic Censorship: A Tribute to Roger Penrose. Found. Phys. 2021, 51, 42. [Google Scholar] [CrossRef]
  10. Senovilla, J.M.M.; Garfinkle, D. The 1965 Penrose singularity theorem. Class. Quantum Gravit. 2015, 32, 124008. [Google Scholar] [CrossRef]
  11. Jiang, J. Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1. Galaxies 2024, 12, 80. [Google Scholar] [CrossRef]
  12. Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
  13. Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. A Brief History of Gravitational Waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef]
  14. King, A. Supermassive Black Holes; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
  15. Rees, M.J. Black Hole Models for Active Galactic Nuclei. Annu. Rev. Astron. Astr. 1984, 22, 471–506. [Google Scholar] [CrossRef]
  16. Ambartsumian, V.A. On the evolution of galaxies. In Proceedings of the 11ème Conseil de Physique de l’Institut International de Physique Solvay: La Structure et l’évolution de l’univers: Rapports et Discussions, Brussels, Belgium, 9–13 June 1958; Stoops, R., Ed.; Institut International de Physique Solvay: Brussels, Belgium, 1958; pp. 241–280. [Google Scholar]
  17. Ambartsumian, V.A. On the nuclei of galaxies and their activity. In The Structure and Evolution of Galaxies. Proceedings of the Thirteenth Conference on Physics at the University of Brussels, September 1964; Prigogine, I., Ed.; Interscience: Saint-Nom-la-Bretèche, France, 1965; pp. 1–14. [Google Scholar]
  18. Ambartsumian, V.A. Introduction to Vatican Symposium ‘Semaine d’Étude sur les Noyaux des Galaxies’. Pont. Acad. Sci. Scr. Varia 1971, 35, 9. [Google Scholar]
  19. Lynden-Bell, D.; Gurzadyan, V. Victor Amazaspovich Ambartsumian. 18 September 1908–12 August 1996. Biogr. Mems Fell. R. Soc. 1998, 44, 23–34. [Google Scholar] [CrossRef]
  20. Lynden-Bell, D. Galactic Nuclei as Collapsed Old Quasars. Nature 1969, 223, 690–694. [Google Scholar] [CrossRef]
  21. Lynden-Bell, D.; Rees, M.J. On quasars, dust and the galactic centre. Mon. Not. Roy. Astron. Soc. 1971, 152, 461–475. [Google Scholar] [CrossRef]
  22. Volonteri, M.; Habouzit, M.; Colpi, M. The origins of massive black holes. Nat. Rev. Phys. 2021, 3, 732–743. [Google Scholar] [CrossRef]
  23. Genzel, R.; Eisenhauer, F.; Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 2010, 82, 3121–3195. [Google Scholar] [CrossRef]
  24. Akiyama, K. et al. [Event Horizon Telescope Collaboration]. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
  25. Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
  26. Luminet, J.-P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 1979, 75, 228–235. [Google Scholar]
  27. Falcke, H.; Melia, F.; Agol, E. Viewing the Shadow of the Black Hole at the Galactic Center. Astrophys. J. Lett. 2000, 528, L13–L16. [Google Scholar] [CrossRef]
  28. Luminet, J.-P. Seeing Black Holes: From the Computer to the Telescope. Universe 2018, 4, 86. [Google Scholar] [CrossRef]
  29. Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
  30. Miles, M.T.; Shannon, R.M.; Reardon, D.J.; Bailes, M.; Champion, D.J.; Geyer, M.; Gitika, P.; Grunthal, K.; Keith, M.J.; Kramer, M.; et al. The MeerKAT Pulsar Timing Array: The first search for gravitational waves with the MeerKAT radio telescope. Mon. Not. Roy. Astron. Soc. 2025, 536, 1489–1500. [Google Scholar] [CrossRef]
  31. Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
  32. Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
  33. Page, D.N.; Hawking, S.W. Gamma rays from primordial black holes. Astrophys. J. 1976, 206, 1–7. [Google Scholar] [CrossRef]
  34. Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
  35. Bekenstein, J.D. Statistical black-hole thermodynamics. Phys. Rev. D 1975, 12, 3077–3085. [Google Scholar] [CrossRef]
  36. Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef]
  37. Adami, C. Stimulated emission of radiation and the black hole information problem. Ann. Phys. 2024, 468, 169739. [Google Scholar] [CrossRef]
  38. Curiel, E. The many definitions of a black hole. Nat. Astron. 2019, 3, 27–34. [Google Scholar] [CrossRef]
  39. Alho, A.; Natário, J.; Pani, P.; Raposo, G. Compactness bounds in general relativity. Phys. Rev. D 2022, 106, L041502. [Google Scholar] [CrossRef]
  40. Buchdahl, H.A. General Relativistic Fluid Spheres. Phys. Rev. 1959, 116, 1027–1034. [Google Scholar] [CrossRef]
  41. Barausse, E.; Kunz, J. Black holes beyond General Relativity. Gen. Relativ. Gravit. 2025, 57, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Iorio, L. Pyknons: A Suggestion for Rebranding Black Holes. Universe 2025, 11, 251. https://doi.org/10.3390/universe11080251

AMA Style

Iorio L. Pyknons: A Suggestion for Rebranding Black Holes. Universe. 2025; 11(8):251. https://doi.org/10.3390/universe11080251

Chicago/Turabian Style

Iorio, Lorenzo. 2025. "Pyknons: A Suggestion for Rebranding Black Holes" Universe 11, no. 8: 251. https://doi.org/10.3390/universe11080251

APA Style

Iorio, L. (2025). Pyknons: A Suggestion for Rebranding Black Holes. Universe, 11(8), 251. https://doi.org/10.3390/universe11080251

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop