A Study of the Origin of Two High-Speed R-Process-Enriched Stars by the Abundance Decomposition Approach
Abstract
1. Introduction
2. The Astrophysical Origins of Elements in TYC 622–742–1 and TYC 1193-1918-1
2.1. Model and Calculations
2.2. The Astrophysical Origins of Elements in TYC 622-742-1 and TYC 1193-1918-1
3. Analysis of the Formation of TYC 622-742-1 and TYC 1193-1918-1
4. Potential Origins of Our High-Velocity Stars
- Merging of an external galaxy with the Milky Way.
- Origin in an external galaxy (e.g., Andromeda) and ejection via interaction with its central black hole [40].
- A star in a binary system with a massive primary that ended its life as a supernova (SN), imparting a “kick” to the secondary.
- A star in a hierarchical triple system, where a massive primary exploded as an SN, ejecting the outer binary pair.
- The stars could have been born in a low-mass (i.e., open) star cluster, which dissolved within a few hundred Myr or faster and which formed even before the globular clusters (GCs) formed in the population II halo. Indeed, that all of the population II halo could have come from a population of star clusters that formed during the very early collapse of the proto-Galactic gas cloud and before the MW disk started to form has been shown in [41];
- Origin in a GC and ejection through gravitational interaction with an intermediate-mass black hole (IMBH) at the cluster’s center [42].
- The ratios in our sample are consistent with GC origins, as stars in GCs are typically -enhanced.
- The presence of Na–O anticorrelation, a characteristic of GCs, is also observed in our sample [45].
5. Conclusions
- The component coefficients, , , and for TYC 622-742-1 and , , and for TYC 1193-1918-1, are derived, which suggest that the main s-process contribution is negligible for the synthesis of HNCEs in the sample stars.
- The light, Fe-group, and LNCEs are produced by the primary process, while the HNCEs () in TYC 622-742-1 and TYC 1193-1918-1 dominantly come from the main r-process. We suggest that both sample stars were born in a gas cloud contaminated with main r- and primary process materials.
- We compare the observed abundances of TYC 622-742-1 with those of the r-II star HD 222925, located in the Galactic halo. We find that all the light elements (), iron-group elements (), LNCEs (), and HNCEs () in TYC 622-742-1 are in good agreement with the observed abundances in HD 222925. Previous studies have explained that the HNCEs in HD 222925 are produced by a single r-process yield event, such as an NSM [37]. Our fitted results agree with these studies. Considering these similarities, we can infer that the synthesis of HNCEs in TYC 622-742-1 is likely the result of a main r-process event, such as an NSM. We extend this comparison to TYC 1193-1918-1, as its main r-process and primary process mechanisms closely resemble those of TYC 622-742-1.
- The coefficients of the two sample stars are more similar to Galactic halo stars. This similarity suggests that our sample stars likely share a common origin or evolutionary history with the MP stars of the Galactic halo, which is consistent with the conclusions of Matas Pinto et al. [24]. Using the decomposition method, we further quantitatively obtain the contributions of various astrophysical sources to the sample stars.
- The orbital dynamics and -enhanced compositions of both stars suggest that they originated in the MW disk, possibly from GCs, and were later displaced into the halo through dynamical interactions. Alternatively, the sample stars could have been formed in low-mass clusters that dissolved within a few hundred Myr as part of the forming population II halo [41].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Ivans, I.I.; Fuller, G.M.; Burles, S.; Beers, T.C.; Lawler, J.E. Evidence of multiple R-process sites in the early galaxy: New observations of CS 22892–052. Astrophys. J. 2000, 533, L139. [Google Scholar] [CrossRef] [PubMed]
- Truran, J.W.; Cowan, J.J.; Pilachowski, C.A.; Sneden, C. Probing the Neutron-Capture Nucleosynthesis History of Galactic Matter. Publ. Astron. Soc. Pac. 2002, 114, 1293. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Lawler, J.E.; Ivans, I.I.; Burles, S.; Beers, T.C.; Primas, F.; Hill, V.; Truran, J.W.; Fuller, G.M.; et al. The extremely metal-poor, neutron capture-rich star CS 22892-052: A comprehensive abundance analysis. Astrophys. J. 2003, 591, 936. [Google Scholar] [CrossRef]
- Thielemann, F.K.; Eichler, M.; Panov, I.V.; Wehmeyer, B. Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 2017, 67, 253. [Google Scholar] [CrossRef]
- Frebel, A.; Beers, T.C. The formation of the heaviest elements. Phys. Today 2018, 71, 30. [Google Scholar] [CrossRef]
- Kajino, T.; Aoki, W.; Balantekin, A.B.; Diehl, R.; Famiano, M.A.; Mathews, G.J. Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys. 2019, 107, 109. [Google Scholar] [CrossRef]
- Qian, Y.Z.; Wasserburg, G.J. Where, oh where has the r-process gone? Phys. Rep. 2007, 442, 237. [Google Scholar] [CrossRef]
- Travaglio, C.; Gallino, R.; Arnone, E.; Cowan, J.; Jordan, F.; Sneden, C. Galactic evolution of Sr, Y, and Zr: A multiplicity of nucleosynthetic processes. Astrophys. J. 2004, 601, 864. [Google Scholar] [CrossRef]
- Wanajo, S.; Ishimaru, Y. r-process calculations and Galactic chemical evolution. Astrophys. J. 2006, 777, 676. [Google Scholar] [CrossRef]
- Li, H.; Ma, W.; Cui, W.; Zhang, B. Estimating R-Process Yields from Abundances of the Metal-Poor Stars. Publ. Astron. Soc. Pac. 2014, 126, 544. [Google Scholar] [CrossRef]
- TNiu, P.; Cui, W.; Zhang, B. Study of the element abundances in HD 140283: The abundance robustness of the weak r-and main r-process stars. Astrophys. J. 2015, 813, 56. [Google Scholar]
- Beers, T.C.; Christlieb, N. The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev. Astron. Astrophys. 2005, 43, 531. [Google Scholar] [CrossRef]
- Frebel, A. From nuclei to the cosmos: Tracing heavy-element production with the oldest stars. Annu. Rev. Nucl. Part. Sci. 2018, 68, 237. [Google Scholar] [CrossRef]
- Frebel, A.; Ji, A.P. Observations of R-Process Stars in the Milky Way and Dwarf Galaxies. In Handbook of Nuclear Physics; Springer Nature Singapore: Singapore, 2022; pp. 1–64. [Google Scholar]
- Kratz, K.L.; Farouqi, K.; Pfeiffer, B.; Truran, J.W.; Sneden, C.; Cowan, J.J. Explorations of the r-processes: Comparisons between calculations and observations of low-metallicity stars. Astrophys. J. 2007, 662, 39. [Google Scholar] [CrossRef]
- Burris, D.L.; Pilachowski, C.A.; Armandroff, T.E.; Sneden, C.; Cowan, J.J.; Roe, H. Neutron-capture elements in the early Galaxy: Insights from a large sample of metal-poor giants. Astrophys. J. 2000, 544, 302. [Google Scholar] [CrossRef]
- Frebel, A.; Christlieb, N.; Norris, J.E.; Thom, C.; Beers, T.C.; Rhee, J. Discovery of HE 1523–0901, a strongly r-process-enhanced metal-poor star with detected uranium. Astrophys. J. 2007, 660, L117. [Google Scholar] [CrossRef]
- Frebel, A. Stellar archaeology: Exploring the Universe with metal-poor stars. Astron. Nachrichten 2010, 331, 474. [Google Scholar] [CrossRef]
- Holmbeck, E.M.; Hansen, T.T.; Beers, T.C.; Placco, V.M.; Whitten, D.D.; Rasmussen, K.C.; Roederer, I.U.; Ezzeddine, R.; Sakari, C.M.; Frebel, A.; et al. The r-process alliance: Fourth data release from the search for r-process-enhanced stars in the galactic halo. Astrophys. J. Suppl. Ser. 2020, 249, 30. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Piran, T.; Paul, M. Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat. Phys. 2015, 11, 1042. [Google Scholar] [CrossRef]
- Matas Pinto, A.D.M.; Caffau, E.; François, P.; Spite, M.; Bonifacio, P.; Wanajo, S.; Aoki, W.; Monaco, L.; Suda, T.; Spite, F.; et al. Detailed investigation of two high-speed evolved Galactic stars. Astron. Nachrichten 2022, 343, e210032. [Google Scholar] [CrossRef]
- Qian, Y.Z.; Wasserburg, G.J. Determination of nucleosynthetic yields of supernovae and very massive stars from abundances in metal-poor stars. Astrophys. J. 2002, 567, 515. [Google Scholar] [CrossRef]
- Izutani, N.; Umeda, H.; Tominaga, N. Explosive nucleosynthesis of weak r-process elements in extremely metal-poor core-collapse supernovae. Astrophys. J. 2009, 692, 1517. [Google Scholar] [CrossRef]
- Li, H.; Shen, X.; Liang, S.; Cui, W.; Zhang, B. Study of Neutron-Capture Element Abundances in Metal-Poor Stars. Publ. Astron. Soc. Pac. 2013, 125, 143. [Google Scholar] [CrossRef]
- Qian, Y.Z.; Wasserburg, G.J. A model for abundances in metal-poor stars. Astrophys. J. 2001, 559, 925. [Google Scholar] [CrossRef]
- Oehm, W.; Kroupa, P. The relevance of dynamical friction for the MW/LMC/SMC triple system. Universe 2024, 10, 143. [Google Scholar] [CrossRef]
- Noguchi, K.; Aoki, W.; Kawanomoto, S.; Ando, H.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Sadakane, K.; Sato, B.E.; et al. High dispersion spectrograph (HDS) for the Subaru telescope. Publ. Astron. Soc. Jpn. 2002, 54, 855. [Google Scholar] [CrossRef]
- Alvarez, R.; Plez, B. Near-infrared narrow-band photometry of M-giant and Mira stars: Models meet observations. Astron. Astrophys. 1998, 330, 1109. [Google Scholar]
- Kurucz, R.L. Atlas12, synthe, atlas9, width9, et cetera. Mem. Della Soc. Astron. Ital. Suppl. 2005, 8, 14. [Google Scholar]
- Sbordone, L.; Caffau, E.; Bonifacio, P.; Duffau, S. MyGIsFOS: An automated code for parameter determination and detailed abundance analysis in cool stars. Astron. Astrophys. 2014, 564, A109. [Google Scholar] [CrossRef]
- Liang, S.; Li, H.; Shen, X.; Cui, W.; Zhang, B. Abundance Analysis of r+ s Stars: r-Process Abundance Comparison between r+ s Stars and r-rich Stars. Publ. Astron. Soc. Pac. 2012, 124, 304. [Google Scholar] [CrossRef]
- Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F. s-Process in low-metallicity stars–I. Theoretical predictions. Mon. Not. R. Astron. Soc. 2010, 404, 1529–1544. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-process. Astrophys. J. 1998, 497, 388. [Google Scholar] [CrossRef]
- Roederer, I.U.; Lawler, J.E.; Den Hartog, E.A.; Placco, V.M.; Surman, R.; Beers, T.C.; Ezzeddine, R.; Frebel, A.; Hansen, T.T.; Hattori, K.; et al. The R-process Alliance: A nearly complete r-process abundance template derived from ultraviolet spectroscopy of the r-process-enhanced metal-poor Star HD 222925. Astrophys. J. Suppl. Ser. 2022, 260, 27. [Google Scholar] [CrossRef]
- Wen, F.; Han, W.Q.; Cui, W.Y.; Li, H.J.; Zhang, B. A Study of Elemental Abundance Pattern of the r-II Star HD 222925. Res. Astron. Astrophys. 2023, 23, 125009. [Google Scholar] [CrossRef]
- Li, H.; Cui, W.; Zhang, B. Investigation of the Puzzling Abundance Pattern in the Stars of the Fornax Dwarf Spheroidal Galaxy. Astrophys. J. 2013, 775, 12. [Google Scholar] [CrossRef]
- Sherwin, B.D.; Loeb, A.; O’Leary, R.M. Hypervelocity stars from the Andromeda galaxy. Mon. Not. R. Astron. Soc. 2008, 386, 1179–1191. [Google Scholar] [CrossRef]
- Kroupa, P.; Boily, C.M. On the mass function of star clusters. Mon. Not. R. Astron. Soc. 2002, 336, 1188–1194. [Google Scholar] [CrossRef]
- Fragione, G.; Gualandris, A. Hypervelocity stars from star clusters hosting intermediate-mass black holes. Mon. Not. R. Astron. Soc. 2019, 489, 4543–4556. [Google Scholar] [CrossRef]
- Jean-Baptiste, I.; Di Matteo, P.; Haywood, M.; Gómez, A.; Montuori, M.; Combes, F.; Semelin, B. On the kinematic detection of accreted streams in the Gaia era: A cautionary tale. Astron. Astrophys. 2017, 604, A106. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Gratton, R.G.; Lucatello, S.; Bragaglia, A.; Carretta, E.; Cassisi, S.; Momany, Y.; Pancino, E.; Valenti, E.; Caloi, V.; Claudi, R.; et al. Na-O anticorrelation and horizontal branches-V. The Na-O anticorrelation in NGC 6441 from Giraffe spectra. Astron. Astrophys. 2007, 464, 953–965. [Google Scholar] [CrossRef]
- Gratton, R.; Bragaglia, A.; Carretta, E.; D’Orazi, V.; Lucatello, S.; Sollima, A. What is a globular cluster? An observational perspective. Astron. Astrophys. Rev. 2019, 27, 8. [Google Scholar] [CrossRef]
- Helmi, A.; Van Leeuwen, F.; McMillan, P.J.; Massari, D.A.V.I.D.E.; Antoja, T.; Robin, A.C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; et al. Gaia Data Release 2-Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 2018, 616, A12. [Google Scholar]
- Marino, A.F.; Sneden, C.; Kraft, R.P.; Wallerstein, G.; Norris, J.E.; Da Costa, G.; Milone, A.P.; Ivans, I.I.; Gonzalez, G.; Fulbright, J.P.; et al. The two metallicity groups of the globular cluster M 22: A chemical perspective. Mon. Not. R. Astron. Soc. 2011, 532, A8. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Karakas, A.I.; Casagrande, L.; Yong, D.; Shingles, L.; Da Costa, G.; Norris, J.E.; Stetson, P.B.; Lind, K.; et al. Iron and s-elements abundance variations in NGC 5286: Comparison with ‘anomalous’ globular clusters and Milky Way satellites. Mon. Not. R. Astron. Soc. 2015, 450, 815–845. [Google Scholar] [CrossRef]
- Bovy, J. galpy: A Python Library for Galactic Dynamics. Astrophys. J. Suppl. Ser. 2015, 216, 29. [Google Scholar] [CrossRef]
TYC 622–742–1 | TYC 1193–1918–1 |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, M.Z.; Cui, W.; Li, H.; Shi, J. A Study of the Origin of Two High-Speed R-Process-Enriched Stars by the Abundance Decomposition Approach. Universe 2025, 11, 261. https://doi.org/10.3390/universe11080261
Ashraf MZ, Cui W, Li H, Shi J. A Study of the Origin of Two High-Speed R-Process-Enriched Stars by the Abundance Decomposition Approach. Universe. 2025; 11(8):261. https://doi.org/10.3390/universe11080261
Chicago/Turabian StyleAshraf, Muhammad Zeshan, Wenyuan Cui, Hongjie Li, and Jianrong Shi. 2025. "A Study of the Origin of Two High-Speed R-Process-Enriched Stars by the Abundance Decomposition Approach" Universe 11, no. 8: 261. https://doi.org/10.3390/universe11080261
APA StyleAshraf, M. Z., Cui, W., Li, H., & Shi, J. (2025). A Study of the Origin of Two High-Speed R-Process-Enriched Stars by the Abundance Decomposition Approach. Universe, 11(8), 261. https://doi.org/10.3390/universe11080261