Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints
Abstract
1. Introduction
2. Brief Concept of Weyl Type Gravity
3. Cosmological Field Equations
4. Cosmological Solutions
5. Cosmological Constraints
5.1. Hubble Data
5.2. Apparent Magnitude
5.3. Information Criteria
6. Discussion
6.1. Energy Conditions
- Null Energy Condition (NEC):
- Weak Energy Condition (WEC): ,
- Dominant Energy Condition (DEC): , meaning
- Strong Energy Condition (SEC): ,
6.2. Om Diagnostic
6.3. Statefinder Analysis
7. Age of the Universe
8. Conclusions
- We identified a transit phase characterized by deceleration in the past and acceleration in the late time, exhibiting phantom behavior in the dark energy model, which aligns well with recent observations.
- We found the Hubble constant value as Km/s/Mpc, along with CC data, and Km/s/Mpc along with joint data CC+Pantheon. The Hubble tension is the difference between the conclusions of two approaches for calculating the cosmic expansion rate. The observations can be inferred using the cosmological model and early universe data, or directly measured in the local universe. Interestingly, the values measured by these two approaches differ. The disparity between values estimated from the local distance ladder and the CMB poses the most significant challenge to the mainstream CDM model. This discrepancy is also known as “Hubble Tension” [82,83,84]. SNIa data in combination with CMB and BAO observations, Giostri et al. [85] investigated the Hubble constant plus deceleration parameter as and , respectively. Recently, Aydiner et al. [86] found that the scale factor behaves as below , and as within the interval of around and km/s/Mpc, which shows the dependence on the weak and strong interaction between dark components above , respectively. In 2013, Bennett et al. [87] provided km/s/Mpc through analyzing the nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations. The first data release of the Planck space observatory, which was operated by the European Space Agency (ESA), gave a precise result km/s/Mpc [82]. After that, a more accurate km/s/Mpc yielded by the Planck final data release is also in line with the Planck2013 results [88]. Researchers also consider adding the other observational data to constrain , Planck2018+lensing km/s/Mpc and Planck2018+lensing+BAO km/s/Mpc [88]. Thus, we observe that our finding of is consistent with recent observations [82,87,88].
- We found the matter energy density parameter value as , and effective EoS parameter with dark energy EoS parameter as along the CC data and along the CC+Pantheon data, which are in good agreement with recent observations.
- We looked into the model parameters , , m, and that are non-vanishing. These show how different factors affect the Weyl-type gravity theory.
- We found that the current value of the deceleration parameter is along the CC data and along the CC+Pantheon data. Both of these values are negative , which means that the universe model is currently accelerating.
- The current age of the universe is determined to be billion years based on the CC dataset. When incorporating both the CC and Pantheon datasets, the estimated age is refined to billion years.
- We found that our derived model satisfied all energy conditions except SEC, which produces an accelerating phase of the expanding universe.
- The Om diagnostic analysis reveals the phantom dark energy behavior of the model.
- The analysis of AIC and BIC criterion shows less tension between the model and CDM.
- The statefinder analysis of the model reveals the late-time tendency to the CDM model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.-G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Hanany, S.; Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P.G.; Hristov, V.V.; Jaffe, A.H.; et al. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on angular scales of 10 arcminutes to 5 degrees. Astophys. J. 2000, 545, L5–L9. [Google Scholar] [CrossRef]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. 2007, 170, 377–408. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP*) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2011, 192, 18. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-Linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1–8. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Myrzakulov, R. Accelerating universe from F(T) gravity. Eur. Phys. J. C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f(T) gravity. Phys. Rev. D 2011, 84, 043527. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113–117. [Google Scholar]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.D. f(Q,T) gravity. Eur. Phys. J. C 2019, 79, 708. [Google Scholar] [CrossRef]
- Arora, S.; Pacif, S.K.J.; Bhattacharjee, S.; Sahoo, P.K. f(Q,T) gravity models with observational constraints. Phys. Dark Universe 2020, 30, 100664. [Google Scholar] [CrossRef]
- Arora, S.; Parida, A.; Sahoo, P.K. Constraining effective equation of state in f(Q,T) gravity. Eur. Phys. J. C 2021, 81, 555. [Google Scholar] [CrossRef]
- Zia, R.; Maurya, D.C.; Shukla, A.K. Transit cosmological models in modified F(Q,T) gravity. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150051. [Google Scholar] [CrossRef]
- Alvarez, E.; Gonzalez-Martin, S. Weyl gravity revisited. J. Cosmol. Astropart. Phys. 2017, 2017, 011. [Google Scholar] [CrossRef]
- Gomes, C.; Bertolami, O. Nonminimally coupled Weyl gravity. Class. Quantum Gravity 2019, 36, 235016. [Google Scholar] [CrossRef]
- Xu, Y.; Harko, T.; Shahidi, S.; Liang, S.-D. Weyl type f(Q,T) gravity, and its cosmological implications. Eur. Phys. J. C 2020, 80, 449. [Google Scholar] [CrossRef]
- Yang, J.-Z.; Shahidi, S.; Harko, T.; Liang, S.-D. Geodesic deviation, Raychaudhuri equation, Newtonian limit, and tidal forces in Weyl-type f(Q,T) gravity. Eur. Phys. J. C 2021, 81, 111. [Google Scholar] [CrossRef]
- Gadbail, G.; Arora, S.; Sahoo, P.K. Power-law cosmology in Weyl-type f(Q,T) gravity. Eur. Phys. J. Plus 2021, 136, 1040. [Google Scholar] [CrossRef]
- Wheeler, J.T. Weyl gravity as general relativity. Phys. Rev. D 2014, 90, 025027. [Google Scholar] [CrossRef]
- Bhagat, R.; Narawade, S.A.; Mishra, B. Weyl type f(Q,T) gravity observational constrained cosmological models. Phys. Dark Universe 2023, 41, 101250. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Arora, S.; Sahoo, P.K. Viscous cosmology in the Weyl-type f(Q,T) gravity. Eur. Phys. J. C 2021, 81, 1088. [Google Scholar] [CrossRef]
- Koussour, M. A model-independent method with phantom divide line crossing in Weyl-type f(Q,T) gravity. Chin. J. Phys. 2023, 83, 454–466. [Google Scholar] [CrossRef]
- Alfedeel, A.H.A.; Koussour, M.; Myrzakulov, N. Probing Weyl-type f(Q,T) gravity: Cosmological implications and constraints. Astron. Comput. 2024, 47, 100821. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Arora, S.; Kumar, P.; Sahoo, P.K. Interaction of divergence-free deceleration parameter in Weyl-type f(Q,T) gravity. Chin. J. Phys. 2022, 79, 246–255. [Google Scholar] [CrossRef]
- Bhagat, R.; Tello-Ortiz, F.; Mishra, B. Tracing cosmic evolution through Weyl-Type f(Q,T) gravity model: Theoretical analysis and observational validation. Phys. Dark Universe 2025, 48, 101913. [Google Scholar] [CrossRef]
- Maurya, D.C. Constrained dark energy models in Weyl type f(Q,T) gravity. Int. J. Geom. Methods Mod. Phys. 2025, 2550186. [Google Scholar] [CrossRef]
- Goswami, G.K.; Singh, J.K.; Rani, R.; Pradhan, A. FLRW cosmology in Weyl type f(Q) gravity and observational constraints. J. High Energy Astrophys. 2024, 43, 105–113. [Google Scholar] [CrossRef]
- Zhadyranova, A.; Koussour, M.; Bekkhozhayev, S. The dynamics of matter bounce cosmology in Weyl-type f(Q, T) gravity. Chin. J. Phys. 2024, 89, 1483–1492. [Google Scholar] [CrossRef]
- Bhagat, R.; Mishra, B. Observational constrained Weyl type f(Q,T) gravity cosmological model and the dynamical system analysis. Astropart. Phys. 2024, 163, 103011. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Sharov, G.S.; Vasiliev, V.O. How predictions of cosmological models depend on Hubble parameter data sets. Math. Model. Geom. 2018, 6, 1–20. [Google Scholar] [CrossRef]
- Asvesta, K.; Kazantzidis, L.; Perivolaropoulos, L.; Tsagas, C.G. Observational constraints on the deceleration parameter in a tilted universe. Mon. Not. R. Astron. Soc. 2022, 513, 2394–2406. [Google Scholar] [CrossRef]
- Hogg, D.W.; Mackey, D.F. Data analysis recipes: Using Markov Chain Monte Carlo. Astrophys. J. Suppl. Ser. 2018, 236, 11. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Ellis, G.; Maartens, R.; MacCallum, M. Relativistic Cosmology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Conley, A.; Guy, J.; Sullivan, M.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R.G.; Fouchez, D.; Hardin, D.; et al. Supernova constrants and systemetic uncertainities from the first three years of the supernova legacy survey. Astrophys. J. 2011, 192, 1. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, Y.; Chang, Z. Anisotropy of the Universe via the Pantheon supernovae sample revisited. Mon. Not. R. Astron. Soc. 2019, 486, 5679–5689. [Google Scholar] [CrossRef]
- Kazantzidis, L.; Perivolaropoulos, L. Hints of a local matter underdensity or modified gravity in the low z Pantheon data. Phys. Rev. D 2020, 102, 023520. [Google Scholar] [CrossRef]
- Sapone, D.; Nesseris, S.; Bengaly, C.A.P. Is there any measurable redshift dependence on the SN Ia absolute magnitude? Phys. Dark Universe 2021, 32, 100814. [Google Scholar] [CrossRef]
- Kazantzidis, L.; Koo, H.; Nesseris, S.; Perivolaropoulos, L.; Shafieloo, A. Hints for possible low redshift oscillation around the best-fitting ΛCDM model in the expansion history of the Universe. Mon. Not. R. Astron. Soc. 2021, 501, 3421–3426. [Google Scholar]
- Dainotti, M.G.; De Simone, B.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble Constant Tension in the SNe Ia Pantheon Sample. Astrophys. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Dainotti, M.G.; De Simone, B.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G.; Bogdan, M.; Ugale, S. On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030. Galaxies 2022, 10, 24. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. w−M phantom transition at zt≃0.1 as a resolution of the Hubble tension. Phys. Rev. D 2021, 103, 083517. [Google Scholar] [CrossRef]
- Camarena, D.; Marra, V. On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference. Mon. Not. R. Astron. Soc. 2021, 504, 5164–5171. [Google Scholar] [CrossRef]
- Marra, V.; Perivolaropoulos, L. Rapid transition of Geff at zt≃0.01 as a possible solution of the Hubble and growth tensions. Phys. Rev. D 2021, 104, L021303. [Google Scholar] [CrossRef]
- Alestas, G.; Perivolaropoulos, I.A.L. Hints for a Gravitational Transition in Tully-Fisher Data. Universe 2021, 7, 366. [Google Scholar] [CrossRef]
- Perivolaropoulos, L. Is the Hubble crisis connected with the extinction of dinosaurs? Universe 2022, 8, 263. [Google Scholar] [CrossRef]
- Anderson, K. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Liddle, A.R. Information criteria for astrophysical model selection. Mon. Not. Roy. Astron. Soc. 2007, 377, L74–L78. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Statist. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Myrzakulov gravity. Phys. Rev. D 2021, 103, 104013. [Google Scholar] [CrossRef]
- Maurya, D.C. Late-time accelerating cosmological models in f(R,Lm,T)-gravity with observational constraints. Phys. Dark Universe 2024, 46, 101722. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. FLRW cosmology in Metric-Affine F(R,Q) gravity. Chin. Phys. C 2024, 48, 125101. [Google Scholar] [CrossRef]
- Maurya, D.C. Transit dark energy models in Hoyle-Narlikar gravity with observational constraints. Phys. Dark Universe 2025, 47, 101782. [Google Scholar] [CrossRef]
- Maurya, D.C. Constrained transit cosmological models in f(R,Lm,T)-gravity. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2550028. [Google Scholar] [CrossRef]
- Maurya, D.C. Accelerating cosmological models in Hoyle-Narlikar gravity with observational constraints. Int. J. Geom. Methods Mod. Phys. 2025, 2550089. [Google Scholar] [CrossRef]
- Lalke, A.R.; Singh, G.P.; Singh, A. Cosmic dynamics with late-time constraints on the parametric deceleration parameter model. Eur. Phys. J. Plus 2024, 139, 288. [Google Scholar] [CrossRef]
- Mandal, S.; Singh, A.; Chaubey, R. Late-time constraints on barotropic fluid cosmology. Phys. Lett. A 2024, 519, 129714. [Google Scholar] [CrossRef]
- Singh, A.; Krishnannair, S. Affine EoS cosmologies: Observational and dynamical system constraints. Astron. Comput. 2024, 47, 100827. [Google Scholar] [CrossRef]
- Capozziello, S.; Farooq, O.; Luongo, O.; Ratra, B. Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in f(R) gravity. Phys. Rev. D 2014, 90, 044016. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Saridakis, E.N. Transition redshift in f(T) cosmology and observational constraints. Phys. Rev. D 2015, 91, 124037. [Google Scholar] [CrossRef]
- Capozziello, S.; Dunsby, P.K.S.; Luongo, O. Model independent reconstruction of cosmological accelerated-decelerated phase. Mon. Not. R. Astron. Soc. 2022, 509, 5399–5415. [Google Scholar] [CrossRef]
- Muccino, M.; Luongo, O.; Jain, D. Constraints on the transition redshift from the calibrated Gamma-ray Burst Ep-Eiso correlation. Mon. Not. R. Astron. Soc. 2023, 523, 4938–4948. [Google Scholar] [CrossRef]
- Alfano, A.C.; Capozziello, S.; Luongo, O.; Muccino, M. Cosmological transition epoch from gamma-ray burst correlations. J. High Energy Astrophys. 2024, 42, 178–196. [Google Scholar] [CrossRef]
- Alfano, A.C.; Cafaro, C.; Capozziello, S.; Luongo, O. Dark energy-matter equivalence by the evolution of cosmic equation of state. Phys. Dark Universe 2023, 42, 101298. [Google Scholar] [CrossRef]
- Carroll, S. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Schoen, R.; Yau, S.T. Proof of the positive mass theorem. II. Commun. Math. Phys. 1981, 79, 231–260. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Sahni, V.; Shafieloo, A.; Starobinsky, A.A. Two new diagnostics of dark energy. Phys. Rev. D 2008, 78, 103502. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. Statefinder-a new geometrical diagnostic of dark energy. JETP Lett. 2003, 77, 201–206. [Google Scholar] [CrossRef]
- Alam, U.; Sahni, V.; Saini, T.D.; Starobinsky, A.A. Exploring the expanding universe and dark energy using the Statefinder diagnostic. Mon. Not. R. Astron. Soc. 2003, 344, 1057–1074. [Google Scholar] [CrossRef]
- Sami, M.; Shahalam, M.; Skugoreva, M.; Toporensky, A. Cosmological dynamics of a nonminimally coupled scalar field system and its late time cosmic relevance. Phys. Rev. D 2012, 86, 103532. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Hu, J.-P.; Wang, F.-Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. [Google Scholar] [CrossRef]
- Aljohani, M.A.; Mahmoud, E.E.; Yerzhanov, K.; Sergazina, A. Toward the alleviation of the H0 tension in Myrzakulov f(R,T) gravity. Universe 2025, 11, 252. [Google Scholar] [CrossRef]
- Giostri, R.; Vargas dos Santos, M.; Waga, I.; Reis, R.R.R.; Calvão, M.O.; Lago, B.L. From cosmic deceleration to acceleration: New constraints from SN Ia and BAO/CMB. J. Cosmol. Phys. 2012, 2012, 027. [Google Scholar] [CrossRef]
- Aydiner, E.; Basaran-Öz, I.; Dereli, T.; Sarisaman, M. Late time transition of Universe and the hybrid scale factor. Eur. Phys. J. C 2022, 82, 39. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
Model | Parameter | Prior | CC | CC+Pantheon |
---|---|---|---|---|
- | ||||
- | ||||
CDM | ||||
- | - | |||
- |
Model | AIC | AIC | BIC | BIC |
---|---|---|---|---|
CDM |
Model | AIC | AIC | BIC | BIC |
---|---|---|---|---|
CDM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, A.; Zeyauddin, M.; Dixit, A.; Ghaderi, K. Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints. Universe 2025, 11, 279. https://doi.org/10.3390/universe11080279
Pradhan A, Zeyauddin M, Dixit A, Ghaderi K. Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints. Universe. 2025; 11(8):279. https://doi.org/10.3390/universe11080279
Chicago/Turabian StylePradhan, Anirudh, Mohammad Zeyauddin, Archana Dixit, and Kamal Ghaderi. 2025. "Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints" Universe 11, no. 8: 279. https://doi.org/10.3390/universe11080279
APA StylePradhan, A., Zeyauddin, M., Dixit, A., & Ghaderi, K. (2025). Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints. Universe, 11(8), 279. https://doi.org/10.3390/universe11080279