A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data
Abstract
1. Introduction
- The Henry Draper Catalogue (HD): Originally published in 1918, HD provides spectroscopic classifications for initial 225,300 stars. Together with the Henry Draper Extension (1925–1936, 46,850 stars) and the Henry Draper Extension Charts (1937–1949, 86,933 stars), the HD series includes 359,083 stars in total (see [48]).
- The Bonner Durchmusterung (BD, [49]) catalog was published between 1852 and 1859. BD covers 325,037 stars in the northern sky and portions of the south (from BD+89 38 through BD−01 4530). BD was extended by the Southern Durchmusterung (SD, Schoenfeld 1886; 134,834 stars, declinations −1° and −23° degrees) and further supplemented by the Córdoba Durchmusterung (CD, Thome [50,51], 613,959 stars, −22 to −90°). The Cape Photographic Durchmusterung (CPD, ∼450,000 stars) also covers the southern sky (−18 to −90) which was appended to BD. However, CPD was not sampled in this work.
- The Smithsonian Astrophysical Observatory (SAO) Star Catalog: Includes positions and proper motions for 258,997 stars (mostly complete to V = ), plus 4503 stars fainter than V = [52].
- Phases I and II: Scanned 160,670 objects from the PPM catalog.
- Phase V: Included A-F stars from BD, SD, and CD catalogs [63].
2. The Data and Custom Processing
2.1. TESS Data
2.2. Gaia DR2/DR3 and TIC v8.2 Data
2.3. Data Reduction
- (1)
- Light Curve Retrieval and Inspection: For each candidate star, available light curves were retrieved from the MAST archive. One TESS sector was selected for each object—typically the most recent sector with the shortest cadence data (Sectors 1–71). Priority was given to light curves produced by the SPOC, TESS-SPOC, QLP, and TASOC pipelines. Various diagnostic plots were generated, either interactively displayed or saved as PDF files for later visual inspection. These included: SAP and PDCSAP light curves, binned light curves (with 10 min and 30 min bins), periodograms with estimated noise-levels and signal-to-noise ratios (SNRs) of detected peaks. Noise was estimated as the mean amplitude within the Fourier spectrum. To better assess frequency-dependent behavior, noise and SNRs were calculated separately in two frequency ranges: 0–2 and 2–60 . In the 2–60 range, the SNR of 4.5 is taken for significant peaks (see Figure 4). This SNR matches the significance threshold of 4.7 times the mean noise level in the periodogram reported by Bell et al. [89], who analyzed TESS data with the same Lomb–Scargle implementation in Lightkurve [69] which builds on Astropy [68] to compute periodograms as used here. In the low-frequency range (0–2 ), an initial SNR threshold of 5.5 was adopted to reduce false detections caused by red noise. Baran and Koen [90] suggested that space-based photometry may require substantially higher SNR values than ground-based data in order to avoid spurious detections, since they found that SNR thresholds between 4.6 and 5.7 are needed to reach a false alarm probability (FAP) of 0.1%, depending on cadence and coverage. However, we later found this criterion to be too conservative for the high-precision TESS data: a threshold of SNR = 4.5 proved sufficiently robust, especially for TESS light curves. Charpinet et al. [91] similarly showed that a SNR of 4.4 is well above the threshold—four times the median noise level (a widely adopted value first proposed for ground-based multisite campaigns by Breger et al. [92]), while the probability of a true detection exceeds 99.99% for SNR ≳ 5.1. As shown in Figure 1 of Bognár et al. [93], an SNR = 4.54 corresponds to a detection limit at 0.1% FAP (or 99.9% reality). A detection threshold of SNR = 4.5, defined as 4.5 times the median noise level, is also adopted by Baran et al. [94,95] for analyzing TESS data regardless of data coverage.
- (2)
- Assessment of Stellar Parameters and H–R Diagram Position: Fundamental stellar parameters were obtained from the CDS databases and further supplemented with values from the TESS Input Catalog (TIC v8.2, [66]) and Gaia DR3 [47,67]. Each star’s position on the H–R diagram was evaluated to help constrain its variability classification.
3. Methodology and Identification
3.1. Exclusion of Known Variables
3.2. Classification
- (1)
- Light Curve Morphology—Visual assessment of the shape and structure of the light curves.
- (2)
- Periodogram Analysis—Fourier transforms were applied to single-sector TESS data to resolve the periodic components of each star’s brightness variations.
- (3)
- Stellar Atmospheric and Astrophysical Parameters—Effective temperature, spectral type, luminosity, surface gravity, and mass for each star were first retrieved from TIC [66] and then updated using the GDR2 [80] and GDR3 [67] catalogs during data reduction. These parameters were subsequently considered to evaluate each star’s position on the H–R diagram, especially in the context of the known classes of pulsating variables (refers to Figure 3 of [104]).
- (4)
- Contamination and Blending Check—Applied particularly to stars exhibiting complex or ambiguous variability features, such as eclipses overlapping with pulsations, hybrid pulsators, or RR Lyr stars situated in crowded fields or globular clusters.
- Classifications follow the definitions and notations used in GCVS, or Simbad’s object types;
- The presence of multiple variability types or hybrid pulsation is indicated with a plus sign (“+”), e.g., EA+GDOR, DSCT+GDOR;
- If more than one classification is possible, multiple types are listed using a forward slash (“/”);
- Maia variables: Stars exhibiting DSCT, GDOR, or hybrid pulsation signatures with effective temperatures above 9200 K are classified as Maia variables; This group encompasses hot and anomalous Dor stars, hot hybrid Sct- Dor stars, and cool B-type stars with high-frequency pulsations. This classification is consistent with the observed characteristics of Maia stars as hotter extensions of Sct stars suggested by Balona and Ozuyar [88], Balona [107].
- Rotating Stars: The label “ROT” denotes general rotating variable stars, including those dominated by rotational modulation or starspots-induced variability (refers to Figure 4 of [104]). This label encompasses subtypes such as ELL, Canum Venaticorum variables (ACVs), Chemically Peculiar stars (CP), Magnetic Chemically Peculiar stars (MCP), Rapidly Oscillating Ap stars (roAp), and solar-like oscillators. In most cases, detailed subtype classification is not pursued. Particularly, ROT group may merge non-eclipsing RS Canum Venaticorum variables (RS CVn) featured by traveling spots-induced variations or similar to rotational modulations6.
- Candidate Classification: Tentative variability types are marked with a question mark (“?”).
- Unclassified Variables: When a confident classification cannot be made, the general term “variable” is used.
- Uncertain and Non-Variable Stars: If no convincing variability is detected from the selected single-sector TESS light curves, the star is marked as “uncertain”. Stars that show neither significant periodic variations nor prominent peaks in the periodogram are labeled “constant”. Both groups are ultimately excluded from the final catalog of new variable stars.
3.3. Blending and Contamination Issue
3.4. Classification Examples
3.4.1. AG+05 807: Blended with a Known ACV
3.4.2. HD 55823: A Sct in an Eclipsing Binary
3.4.3. HD 201218: A Sct in an Eclipsing Binary
3.4.4. HD 290580: A Dor in an Eclipsing Binary
3.4.5. BD+49 2033: A Dor in an Eclipsing Binary
3.4.6. BD+47 3958: A Dor in an Eclipsing Binary
3.4.7. HD 40656: A Rotating Star with Eclipses
3.5. Classification Accuracy and Reliability
- Data Issue: A classification may be biased due to presence of residual instrumental systematics in the light curves from HLSP-QLP and TASOC, or wrongly de-trended PDCSAP (e.g., Figure 2).
- Blending and Contamination: Stars may be affected by unresolved contamination from nearby sources, which can distort the observed variability pattern. The blending and contamination metrics—CROWDSAP and FLFRCSAP—are provided only for light curves produced by the TESS-SPOC pipeline. Light curves from other sources (e.g., HLSP-QLP) do not include these parameters and therefore cannot be evaluated for blending issue during data processing.
- Parameter Uncertainty: Inaccuracies in stellar parameters (e.g., effective temperature and luminosity) can shift a star’s position on the H–R diagram and influence type assignment, particularly among Maia, Sct, and Dor.
- Potential similar light curves between ACV and RRab, ROT and GDOR, ROT and RS CVn, RRc and EW, RRc and ROT, RRc and DSCT, RRc and GDOR, EB and EW, etc.
- Ambiguities arose in classifying stars with > 9000 K, particularly among SPB, Be (B-type stars with emission lines), ACYG, GCAS, SXARI, ACV, where the classifications remain marginal and subject to high uncertainty).
- A few ambiguities likely occurred among EB, ROT, and RS CVn.
- Misinterpretation of rotational modulation or spots-induced variability as pulsations.
4. Results and Discussions
4.1. Examples of Classifications
4.2. Summary
4.3. Discussions
4.3.1. H–R and CMD Diagrams
4.3.2. About Rotational Modulation and Classifying Dor Stars
5. Conclusions
- Discovery of 51,850 new variable stars, including 15,380 Sct, 18,560 Dor, and 4145 hybrid Sct– Dor pulsators, 260 heartbeat candidates, 28 RR Lyr stars, and over 16,000 newly identified rotational variables, along with several dozen other variable stars.
- Identification of 2645 eclipsing binaries, including 370 candidates with pulsating primaries of Sct or Dor, offering a critical sample to study pulsation–binary tidal interactions.
- Spatial and Gaia CMD analysis confirms that these new variables predominantly trace young to intermediate-age stellar populations in the Galactic disk.
- Demonstration that TESS data, combined with legacy catalogs, is an efficient method for revealing overlooked variables—even at bright magnitudes.
- A valuable catalog for follow-up spectroscopy and time-domain studies with both ground- and space-based platforms.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACYG | Cygni-type |
ACV | Canum Venaticorum variables |
ASAS | All Sky Automated Survey |
ASAS-SN | All Sky Automated Survey for Supernovae |
BD | Bonner Durchmusterung |
CD | Córdoba Durchmusterung |
CDPP | Combined Differential Photometric Precision |
CEP | Cepheid variables |
CMD | Color–Magnitude Diagram |
CP | Chemically Peculiar Stars |
CPD | Cape Photographic Durchmusterung |
DSCT | Scuti stars |
DSS | Digital Sky Survey |
EB | Eclipsing Binary |
ELL | Ellipsoidal Variables |
FFI | TESS Full-Frame Images |
GCAS | Cassiopeiae-type |
GCVS | General Catalogue of Variable Stars |
GDOR | Doradus Stars |
GDR2 | Gaia Data Release 2 |
GDR3 | Gaia Data Release 3 |
HBSs | Heartbeat Stars |
HD | Henry Draper Catalogue |
H–R | Hertzsprung–Russell |
HLSP | TESS High Level Science Products |
MAST | Mikulski Archive for Space Telescopes |
MCP | Magnetic Chemically Peculiar Stars |
MS | Main-Sequence |
OGLE | The Optical Gravitational Lensing Experiment |
PDCSAP | Pre-search Data Conditioned Simple Aperture Photometry |
PPI | Weighted Photometric Purity Index |
PPM | Positions and Proper Motions Catalog |
ppm | Parts Per Million |
QLP | Quick-Look Pipeline |
RNAAS | Research Notes of the American Astronomical Society |
roAp | Rapidly Oscillating Ap stars |
ROT | Rotational Variables |
RR Lyr | RR Lyrae stars |
RS CVn | RS Canum Venaticorum variables |
SXPHE | SX Phoenicis stars |
SAO | Smithsonian Astrophysical Observatory |
SAP | Simple Aperture Photometry |
SNRs | Signal-to-Noise Ratios |
SPOC | NASA’s Science Processing Operations Center |
TAR | Traditional Approximation of Rotation |
TPF | TESS Target Pixel Files |
TASOC | TESS Asteroseismic Science Operations Center |
TEO | Tidally Excited Oscillation |
TESS | Transiting Exoplanet Survey Satellite |
TIC | TESS Input Catalog |
TESS magnitudes | |
VSX | International Variable Star Index at AAVSO |
YSO | Young Stellar Objects |
ZTF | Zwicky Transient Facility |
1 | Frequency spacing is defined as the frequency difference between two consecutive overtones. |
2 | For instance, TESS light curves in Sector 22 for star TIC 18826496 (=BD+38 2277, V = , = ). |
3 | Simbad gives preference to these widely recognized catalogs. The order of priority is roughly Bright Star Catalog (HR), HD, BD/CD/CPD, Hipparcos (HIP) or Tycho (TYC), SAO. If a star is variable, Simbad often first uses the General Catalogue of Variable Stars (GCVS) designation. For naked-eye bright stars, Bayer letters (Greek + Constellation, e.g., Cen) are highly preferred when available, and Flamsteed numbers (e.g., 61 Cyg) are also commonly chosen. |
4 | https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html; or https://archive.stsci.edu/tess/ (accessed on 31 August 2025) |
5 | the Beginner Tutorial notebooks: https://outerspace.stsci.edu/display/TESS/TESS+Archive+Manual; https://github.com/spacetelescope/notebooks/blob/master/notebooks/MAST/TESS/beginner_how_to_use_lc/beginner_how_to_use_lc.ipynb (accessed on 31 August 2025) |
6 | Non-eclipsing RS CVn binaries examples: V1335 Cen and V545 Dra shows spots-induced features; V966 Can is ACV-like; HW Cet is ELL-like; V905 Car shows spots-traveling features. |
References
- Skarka, M.; Žák, J.; Fedurco, M.; Paunzen, E.; Henzl, Z.; Mašek, M.; Karjalainen, R.; Sanchez Arias, J.P.; Sódor, Á.; Auer, R.F.; et al. Periodic variable A-F spectral type stars in the northern TESS continuous viewing zone. I. Identification and classification. Astron. Astrophys. 2022, 666, A142. [Google Scholar] [CrossRef]
- Uytterhoeven, K.; Moya, A.; Grigahcène, A.; Guzik, J.A.; Gutiérrez-Soto, J.; Smalley, B.; Handler, G.; Balona, L.A.; Niemczura, E.; Fox Machado, L.; et al. The Kepler characterization of the variability among A- and F-type stars. I. General overview. Astron. Astrophys. 2011, 534, A125. [Google Scholar] [CrossRef]
- Grigahcène, A.; Antoci, V.; Balona, L.; Catanzaro, G.; Daszyńska-Daszkiewicz, J.; Guzik, J.A.; Handler, G.; Houdek, G.; Kurtz, D.W.; Marconi, M.; et al. Hybrid γ Doradus-δ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations. Astrophys. J. Lett. 2010, 713, L192–L197. [Google Scholar] [CrossRef]
- Xiong, D.R.; Deng, L.; Zhang, C.; Wang, K. Turbulent convection and pulsation stability of stars - II. Theoretical instability strip for δ Scuti and γ Doradus stars. Mon. Not. R. Astron. Soc. 2016, 457, 3163–3177. [Google Scholar] [CrossRef]
- Balona, L.A. Gaia luminosities of pulsating A-F stars in the Kepler field. Mon. Not. R. Astron. Soc. 2018, 479, 183–191. [Google Scholar] [CrossRef]
- Handler, G.; Pikall, H.; O’Donoghue, D.; Buckley, D.A.H.; Vauclair, G.; Chevreton, M.; Giovannini, O.; Kepler, S.O.; Goode, P.R.; Provencal, J.L.; et al. New Whole Earth Telescope observations of CD-24 7599: Steps towards delta Scuti star seismology. Mon. Not. R. Astron. Soc. 1997, 286, 303–314. [Google Scholar] [CrossRef]
- Ballot, J.; Lignières, F.; Reese, D.R.; Rieutord, M. Gravity modes in rapidly rotating stars. Limits of perturbative methods. Astron. Astrophys. 2010, 518, A30. [Google Scholar] [CrossRef]
- Van Reeth, T.; Tkachenko, A.; Aerts, C. Interior rotation of a sample of γ Doradus stars from ensemble modelling of their gravity-mode period spacings. Astron. Astrophys. 2016, 593, A120. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instruments Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Oelkers, R.J.; Stassun, K.G. Precision Light Curves from TESS Full-frame Images: A Different Imaging Approach. Astron. J. 2018, 156, 132. [Google Scholar] [CrossRef]
- Twicken, J.D.; Jenkins, J.M.; Caldwell, D.A.; Tofflemire, B.M.; Jafariyazani, M.; Tenenbaum, P.; Smith, J.C.; Striegel, S.L.; Ting, E.; Wohler, B.; et al. TESS Science Processing Operations Center Photometric Precision Archival Product. Res. Notes Am. Astron. Soc. 2025. [Google Scholar] [CrossRef]
- Vanderspek, R.; Doty, J.P.; Fausnaugh, M.; Villasenor, J.N.S.; Jenkins, J.M.; Berta-Thompson, Z.K.; Burke, C.J.; Ricker, G.R. TESS Instrument Handbook; Technical Report; Kavli Institute for Astrophysics and Space Science: Cambridge, MA, USA; Massachusetts Institute of Technology: Cambridge, MA, USA, 2018. [Google Scholar]
- Antoci, V.; Cunha, M.S.; Bowman, D.M.; Murphy, S.J.; Kurtz, D.W.; Bedding, T.R.; Borre, C.C.; Christophe, S.; Daszyńska-Daszkiewicz, J.; Fox-Machado, L.; et al. The first view of δ Scuti and γ Doradus stars with the TESS mission. Mon. Not. R. Astron. Soc. 2019, 490, 4040–4059. [Google Scholar] [CrossRef]
- Hon, M.; Huber, D.; Kuszlewicz, J.S.; Stello, D.; Sharma, S.; Tayar, J.; Zinn, J.C.; Vrard, M.; Pinsonneault, M.H. A “Quick Look” at All-sky Galactic Archeology with TESS: 158,000 Oscillating Red Giants from the MIT Quick-look Pipeline. Astrophys. J. 2021, 919, 131. [Google Scholar] [CrossRef]
- Prša, A.; Kochoska, A.; Conroy, K.E.; Eisner, N.; Hey, D.R.; IJspeert, L.; Kruse, E.; Fleming, S.W.; Johnston, C.; Kristiansen, M.H.; et al. TESS Eclipsing Binary Stars. I. Short-cadence Observations of 4584 Eclipsing Binaries in Sectors 1-26. Astrophys. J. Suppl. Ser. 2022, 258, 16. [Google Scholar] [CrossRef]
- Shi, X.d.; Qian, S.b.; Li, L.J. New Pulsating Stars Detected in EA-type Eclipsing-binary Systems Based on TESS Data. Astrophys. J. Suppl. Ser. 2022, 259, 50. [Google Scholar] [CrossRef]
- Balona, L.A. Identification and classification of TESS variable stars. arXiv 2022, arXiv:2212.10776. [Google Scholar]
- Fetherolf, T.; Pepper, J.; Simpson, E.; Kane, S.R.; Močnik, T.; English, J.E.; Antoci, V.; Huber, D.; Jenkins, J.M.; Stassun, K.; et al. Variability Catalog of Stars Observed during the TESS Prime Mission. Astrophys. J. Suppl. Ser. 2023, 268, 4. [Google Scholar] [CrossRef]
- Gootkin, K.; Hon, M.; Huber, D.; Hey, D.R.; Bedding, T.R.; Murphy, S.J. A New Catalog of 100,000 Variable TESS A-F Stars Reveals a Correlation between δ Scuti Pulsator Fraction and Stellar Rotation. Astrophys. J. 2024, 972, 137. [Google Scholar] [CrossRef]
- Christy, C.T.; Jayasinghe, T.; Stanek, K.Z.; Kochanek, C.S.; Thompson, T.A.; Shappee, B.J.; Holoien, T.W.S.; Prieto, J.L.; Dong, S.; Giles, W. The ASAS-SN catalogue of variable stars X: Discovery of 116,000 new variable stars using G-band photometry. Mon. Not. R. Astron. Soc. 2023, 519, 5271–5287. [Google Scholar] [CrossRef]
- Jayasinghe, T.; Stanek, K.Z.; Kochanek, C.S.; Shappee, B.J.; Holoien, T.W.S.; Thompson, T.A.; Prieto, J.L.; Dong, S.; Pawlak, M.; Pejcha, O.; et al. The ASAS-SN catalogue of variable stars - V. Variables in the Southern hemisphere. Mon. Not. R. Astron. Soc. 2020, 491, 13–28. [Google Scholar] [CrossRef]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; All-Collaborators, M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Ofek, E.O.; Soumagnac, M.; Nir, G.; Gal-Yam, A.; Nugent, P.; Masci, F.; Kulkarni, S.R. A catalogue of over 10 million variable source candidates in ZTF Data Release 1. Mon. Not. R. Astron. Soc. 2020, 499, 5782–5790. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Deng, L.; de Grijs, R.; Yang, M.; Tian, H. The Zwicky Transient Facility Catalog of Periodic Variable Stars. Astrophys. J. Suppl. Ser. 2020, 249, 18. [Google Scholar] [CrossRef]
- Li, G.; Van Reeth, T.; Bedding, T.R.; Murphy, S.J.; Antoci, V.; Ouazzani, R.M.; Barbara, N.H. Gravity-mode period spacings and near-core rotation rates of 611 γ Doradus stars with Kepler. Mon. Not. R. Astron. Soc. 2020, 491, 3586–3605. [Google Scholar] [CrossRef]
- Christophe, S.; Ballot, J.; Ouazzani, R.M.; Antoci, V.; Salmon, S.J.A.J. Deciphering the oscillation spectrum of γ Doradus and SPB stars. Astron. Astrophys. 2018, 618, A47. [Google Scholar] [CrossRef]
- Ouazzani, R.M.; Marques, J.P.; Goupil, M.J.; Christophe, S.; Antoci, V.; Salmon, S.J.A.J.; Ballot, J. γ Doradus stars as a test of angular momentum transport models. Astron. Astrophys. 2019, 626, A121. [Google Scholar] [CrossRef]
- Ouazzani, R.M.; Salmon, S.J.A.J.; Antoci, V.; Bedding, T.R.; Murphy, S.J.; Roxburgh, I.W. A new asteroseismic diagnostic for internal rotation in γ Doradus stars. Mon. Not. R. Astron. Soc. 2017, 465, 2294–2309. [Google Scholar] [CrossRef]
- Garcia, S.; Van Reeth, T.; De Ridder, J.; Tkachenko, A.; IJspeert, L.; Aerts, C. Detection of period-spacing patterns due to the gravity modes of rotating dwarfs in the TESS southern continuous viewing zone. Astron. Astrophys. 2022, 662, A82. [Google Scholar] [CrossRef]
- Bedding, T.R.; Murphy, S.J.; Hey, D.R.; Huber, D.; Li, T.; Smalley, B.; Stello, D.; White, T.R.; Ball, W.H.; Chaplin, W.J.; et al. Very regular high-frequency pulsation modes in young intermediate-mass stars. Nature 2020, 581, 147–151. [Google Scholar] [CrossRef]
- Murphy, S.J.; Bedding, T.R.; Gautam, A.; Joyce, M. A grid of 200,000 models of young δ Scuti stars using MESA and GYRE. Mon. Not. R. Astron. Soc. 2023, 526, 3779–3795. [Google Scholar] [CrossRef]
- Welsh, W.F.; Orosz, J.A.; Aerts, C.; Brown, T.M.; Brugamyer, E.; Cochran, W.D.; Gilliland, R.L.; Guzik, J.A.; Kurtz, D.W.; Latham, D.W.; et al. KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary. Astrophys. J. Suppl. Ser. 2011, 197, 4. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhu, L.Y.; Guo, Z.; Liao, W.P.; Zhao, E.G.; Shi, X.D.; Li, F.X.; Sun, Q.B. Pulsation phases and mode identification of tidally excited oscillations in fourteen Kepler Heartbeat Stars. Mon. Not. R. Astron. Soc. 2024, 530, 586–596. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhu, L.Y.; Liao, W.P.; Zhao, E.G.; Shi, X.D.; Li, F.X.; Sun, Q.B.; Li, P. Detection of Tidally Excited Oscillations in Kepler Heartbeat Stars. Astrophys. J. 2024, 962, 44. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhu, L.Y.; Liao, W.P.; Zhao, E.G.; Shi, X.D.; Sun, Q.B. Modeling and Orbital Parameters of Kepler Heartbeat Stars. Astrophys. J. Suppl. Ser. 2023, 266, 28. [Google Scholar] [CrossRef]
- Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D.W.; Shporer, A.; Isaacson, H.; Howard, A.W.; Endl, M.; Cochran, W.; et al. KIC 8164262: A heartbeat star showing tidally induced pulsations with resonant locking. Mon. Not. R. Astron. Soc. 2018, 473, 5165–5176. [Google Scholar] [CrossRef]
- Fuller, J. Heartbeat stars, tidally excited oscillations and resonance locking. Mon. Not. R. Astron. Soc. 2017, 472, 1538–1564. [Google Scholar] [CrossRef]
- Kirk, B.; Conroy, K.; Prša, A.; Abdul-Masih, M.; Kochoska, A.; Matijevič, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; et al. Kepler Eclipsing Binary Stars. VII. The Catalog of Eclipsing Binaries Found in the Entire Kepler Data Set. Astron. J. 2016, 151, 68. [Google Scholar] [CrossRef]
- Wrona, M.; Ratajczak, M.; Kołaczek-Szymański, P.A.; Kozłowski, S.; Soszyński, I.; Iwanek, P.; Udalski, A.; Szymański, M.K.; Pietrukowicz, P.; Skowron, D.M.; et al. The OGLE Collection of Variable Stars: One Thousand Heartbeat Stars in the Galactic Bulge and Magellanic Clouds. Astrophys. J. Suppl. Ser. 2022, 259, 16. [Google Scholar] [CrossRef]
- Solanki, S.; Cieplak, A.M.; Schnittman, J.; Baker, J.G.; Barclay, T.; Barry, R.K.; Kostov, V.; Kruse, E.; Olmschenk, G.; Powell, B.P.; et al. Short-period Heartbeat Binaries from TESS Full-frame Images. Astrophys. J. Suppl. Ser. 2025, 276, 17. [Google Scholar] [CrossRef]
- Callahan, J.; Rowan, D.M.; Kochanek, C.S.; Stanek, K.Z. Astronomical Cardiology: A Search For Heartbeat Stars Using Gaia and TESS. Open J. Astrophys. 2025, 8, 97. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhou, A.Y.; Zhu, L.Y.; Liao, W.P.; Zhao, E.G.; Shi, X.D.; Li, F.X.; Sun, Q.B. Twenty-three new Heartbeat Star systems discovered based on TESS data. Mon. Not. R. Astron. Soc. 2024, 534, 281–289. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhou, A.Y.; Zhu, L.Y.; Liao, W.P.; Zhao, E.G.; Shi, X.D.; Li, F.X.; Sun, Q.B. Five New Heartbeat Star Systems with Tidally Excited Oscillations Discovered Based on TESS Data. Astrophys. J. 2024, 974, 278. [Google Scholar] [CrossRef]
- Guo, Z.; Fuller, J.; Shporer, A.; Li, G.; Hambleton, K.; Manuel, J.; Murphy, S.; Isaacson, H. KIC 4142768: An Evolved Gamma Doradus/Delta Scuti Hybrid Pulsating Eclipsing Binary with Tidally Excited Oscillations. Astrophys. J. 2019, 885, 46. [Google Scholar] [CrossRef]
- Handler, G.; Kurtz, D.W.; Rappaport, S.A.; Saio, H.; Fuller, J.; Jones, D.; Guo, Z.; Chowdhury, S.; Sowicka, P.; Kahraman Aliçavuş, F.; et al. Tidally trapped pulsations in a close binary star system discovered by TESS. Nat. Astron. 2020, 4, 684–689. [Google Scholar] [CrossRef]
- Jennings, Z.; Southworth, J.; Pavlovski, K.; Van Reeth, T. Physical properties of the eclipsing binary KIC 9851944 and analysis of its tidally perturbed p- and g-mode pulsations. Mon. Not. R. Astron. Soc. 2024, 527, 4052–4075. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef]
- Nesterov, V.V.; Kuzmin, A.V.; Ashimbaeva, N.T.; Volchkov, A.A.; Röser, S.; Bastian, U. The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars. Astron. Astrophys. Suppl. 1995, 110, 367. [Google Scholar]
- Argelander, F.W.A. Bonner Durchmusterung des nordlichen Himmels. Eds Marcus and Weber’s Verlag, Bonn, 0 (1903). VizieR Online Data Catalog: Bonner Durchmusterung (Argelander 1859–1903): I/122 (1995). Available online: https://cdsarc.cds.unistra.fr/cgi-bin/cat/I/122 (accessed on 31 August 2025).
- Thome, J.M. Cordoba Durchmusterung declination −22 to −32. Resultados del Observatorio Nacional Argentino 1892, 16, 1–604. [Google Scholar]
- Thome, J.M. VizieR Online Data Catalog: Cordoba Durchmusterung (Thome 1892–1932), I/114 (1994). Resultados del Observatorio Nacional Argentino, Vol. 16 (1892), 17 (1894), 18 (1900), 21 (1914, 1932). Available online: https://cdsarc.cds.unistra.fr/cgi-bin/cat/I/114 (accessed on 31 August 2025).
- SAO Staff. Smithsonian Astrophysical Observatory Star Catalog. Stars Stellar Syst. 1966, 3, 1–1285. [Google Scholar]
- Roeser, S.; Bastian, U. A New Star Catalogue of SAO Type. Astron. Astrophys. Suppl. 1988, 74, 449. [Google Scholar]
- Röser, S.; Bastian, U. PPM Star Catalogue. Positions and Proper Motions of 18,1731 Stars North of −2.5 Degrees Declination for Equinox and Epoch J2000.0. Vol. I: Zones +80° to +30°. Vol. II: Zones +20° to −0°; The Astronomisches Rechen-Institut Heidelberg (Germany): Heidelberg, Germany, 1991. [Google Scholar]
- Bastian, U.; Röser, S. PPM Star Catalogue. Positions and Proper Motions of 197,179 Stars South of −2.5 Degrees Declination for Equinox and Epoch J2000.0. Vol. III: Zones −00° to −20°. Vol. IV: Zones −30° to −80°; Spektrum Akademischer Verlag: Heidelberg, Germany, 1993. [Google Scholar]
- Röser, S.; Bastian, U. The Final PPM Star Catalogue for Both Hemispheres. Bull. D’Information Cent. Donnees Stellaires 1993, 42, 11–16. [Google Scholar]
- Röser, S.; Bastian, U.; Kuzmin, A. PPM Star Catalogue: The 90,000 Stars Supplement. Astron. Astrophys. Suppl. 1994, 105, 301–303. [Google Scholar]
- Ochsenbein, F.; Bauer, P.; Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. 2000, 143, 23–32. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs: I. 1800+ New δ Scuti and γ Doradus Stars. Res. Notes Am. Astron. Soc. 2023, 7, 210. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs. II. 6600+ New δ Scuti and γ Doradus Stars. Res. Notes Aas 2024, 8, 81. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs. III. 8600+ New δ Scuti and γ Doradus Stars. Res. Notes Aas 2024, 8, 190. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs. IV. 3600+ New δ Scuti and γ Doradus Stars. Res. Notes Am. Astron. Soc. 2025, 9, 56. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs. V. 11,820+ New δ Scuti and γ Doradus Stars. Res. Notes Am. Astron. Soc. 2025, 9, 145. [Google Scholar] [CrossRef]
- Gürol, B.; Zhou, A.Y. Pulsational and eclipsing nature of TIC 140736015. New Astron. 2024, 113, 102271. [Google Scholar] [CrossRef]
- Li, M.Y.; Qian, S.B.; Zhou, A.Y.; Zhu, L.Y.; Liao, W.P.; Chang, L.F.; Zhao, E.G.; Shi, X.D.; Li, F.X.; Sun, Q.B.; et al. A Catalog of Forty-two Heartbeat Stars Discovered in TESS Data. Astrophys. J. 2025. submitted. [Google Scholar] [CrossRef]
- Paegert, M.; Stassun, K.G.; Collins, K.A.; Pepper, J.; Torres, G.; Jenkins, J.; Twicken, J.D.; Latham, D.W. TESS Input Catalog versions 8.1 and 8.2: Phantoms in the 8.0 Catalog and How to Handle Them. arXiv 2021, arXiv:2108.04778. [Google Scholar] [CrossRef]
- Gaia Collaboration; Vallenari, A.; Brown, A.G.A.; Prusti, T.; de Bruijne, J.H.J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Ducourant, C.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar] [CrossRef]
- The Astropy Collaboration; Price-Whelan, A.M.; Sipocz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N.; et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar] [CrossRef]
- Lightkurve Collaboration; Cardoso, J.V.d.M.; Hedges, C.; Gully-Santiago, M.; Saunders, N.; Cody, A.M.; Barclay, T.; Hall, O.; Sagear, S.; Turtelboom, E.; et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library. 2018. Available online: https://ui.adsabs.harvard.edu/abs/2018ascl.soft12013L/abstract (accessed on 19 May 2022).
- Dumusque, X.; Turner, O.; Dorn, C.; Eastman, J.D.; Allart, R.; Adibekyan, V.; Sousa, S.; Santos, N.C.; Mordasini, C.; Bourrier, V.; et al. Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337). Astron. Astrophys. 2019, 627, A43. [Google Scholar] [CrossRef]
- Astudillo-Defru, N.; Cloutier, R.; Wang, S.X.; Teske, J.; Brahm, R.; Hellier, C.; Ricker, G.; Vanderspek, R.; Latham, D.; Seager, S.; et al. A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS. Astron. Astrophys. 2020, 636, A58. [Google Scholar] [CrossRef]
- Demory, B.O.; Pozuelos, F.J.; Gómez Maqueo Chew, Y.; Sabin, L.; Petrucci, R.; Schroffenegger, U.; Grimm, S.L.; Sestovic, M.; Gillon, M.; McCormac, J.; et al. A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astron. Astrophys. 2020, 642, A49. [Google Scholar] [CrossRef]
- Battley, M.P.; Kunimoto, M.; Armstrong, D.J.; Pollacco, D. Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2 min data. Mon. Not. R. Astron. Soc. 2021, 503, 4092–4104. [Google Scholar] [CrossRef]
- Hill, K.L.; Littlefield, C.; Garnavich, P.; Scaringi, S.; Szkody, P.; Mason, P.A.; Kennedy, M.R.; Shaw, A.W.; Covington, A.E. Hitting a New Low: The Unique 28 hr Cessation of Accretion in the TESS Light Curve of YY Dra (DO Dra). Astron. J. 2022, 163, 246. [Google Scholar] [CrossRef]
- Littlefield, C.; Scaringi, S.; Garnavich, P.; Szkody, P.; Kennedy, M.R.; Iłkiewicz, K.; Mason, P.A. Quasi-periodic Oscillations in the TESS Light Curve of TX Col, a Diskless Intermediate Polar on the Precipice of Forming an Accretion Disk. Astron. J. 2021, 162, 49. [Google Scholar] [CrossRef]
- von Essen, C.; Mallonn, M.; Borre, C.C.; Antoci, V.; Stassun, K.G.; Khalafinejad, S.; Tautvaišienė, G. TESS unveils the phase curve of WASP-33b. Characterization of the planetary atmosphere and the pulsations from the star. Astron. Astrophys. 2020, 639, A34. [Google Scholar] [CrossRef]
- Steindl, T.; Zwintz, K.; Bowman, D.M. Tidally perturbed pulsations in the pre-main sequence δ Scuti binary RS Cha. Astron. Astrophys. 2021, 645, A119. [Google Scholar] [CrossRef]
- Southworth, J.; Van Reeth, T. Four bright eclipsing binaries with gamma Doradus pulsating components: CM Lac, MZ Lac, RX Dra and V2077 Cyg. arXiv 2022, arXiv:2207.09169. [Google Scholar] [CrossRef]
- Huang, C.X.; Vanderburg, A.; Pál, A.; Sha, L.; Yu, L.; Fong, W.; Fausnaugh, M.; Shporer, A.; Guerrero, N.; Vanderspek, R.; et al. Photometry of 10 Million Stars from the First Two Years of TESS Full Frame Images: Part I. Res. Notes Am. Astron. Soc. 2020, 4, 204. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Andrae, R.; Fouesneau, M.; Creevey, O.; Ordenovic, C.; Mary, N.; Burlacu, A.; Chaoul, L.; Jean-Antoine-Piccolo, A.; Kordopatis, G.; Korn, A.; et al. Gaia Data Release 2. First stellar parameters from Apsis. Astron. Astrophys. 2018, 616, A8. [Google Scholar] [CrossRef]
- Stassun, K.G.; Oelkers, R.J.; Paegert, M.; Torres, G.; Pepper, J.; De Lee, N.; Collins, K.; Latham, D.W.; Muirhead, P.S.; Chittidi, J.; et al. The Revised TESS Input Catalog and Candidate Target List. Astron. J. 2019, 158, 138. [Google Scholar] [CrossRef]
- Balona, L.A.; Handler, G.; Chowdhury, S.; Ozuyar, D.; Engelbrecht, C.A.; Mirouh, G.M.; Wade, G.A.; David-Uraz, A.; Cantiello, M. Rotational modulation in TESS B stars. Mon. Not. R. Astron. Soc. 2019, 485, 3457–3469. [Google Scholar] [CrossRef]
- Creevey, O.L.; Sordo, R.; Pailler, F.; Frémat, Y.; Heiter, U.; Thévenin, F.; Andrae, R.; Fouesneau, M.; Lobel, A.; Bailer-Jones, C.A.L.; et al. Gaia Data Release 3. Astrophysical parameters inference system (Apsis). I. Methods and content overview. Astron. Astrophys. 2023, 674, A26. [Google Scholar] [CrossRef]
- Andrae, R.; Fouesneau, M.; Sordo, R.; Bailer-Jones, C.A.L.; Dharmawardena, T.E.; Rybizki, J.; De Angeli, F.; Lindstrøm, H.E.P.; Marshall, D.J.; Drimmel, R.; et al. Gaia Data Release 3. Analysis of the Gaia BP/RP spectra using the General Stellar Parameterizer from Photometry. Astron. Astrophys. 2023, 674, A27. [Google Scholar] [CrossRef]
- Recio-Blanco, A.; de Laverny, P.; Palicio, P.A.; Kordopatis, G.; Álvarez, M.A.; Schultheis, M.; Contursi, G.; Zhao, H.; Torralba Elipe, G.; Ordenovic, C.; et al. Gaia Data Release 3. Analysis of RVS spectra using the General Stellar Parametriser from spectroscopy. Astron. Astrophys. 2023, 674, A29. [Google Scholar] [CrossRef]
- Zhou, A.Y. Four Hundred New δ Scuti, γ Doradus and RR Lyrae Stars Identified from TESS and SuperWASP Data. New Astronomy 2025, 11. submitted. [Google Scholar]
- Balona, L.A.; Ozuyar, D. Pulsation among TESS A and B stars and the Maia variables. Mon. Not. R. Astron. Soc. 2020, 493, 5871–5879. [Google Scholar] [CrossRef]
- Bell, K.J.; Córsico, A.H.; Bischoff-Kim, A.; Althaus, L.G.; Bradley, P.A.; Calcaferro, L.M.; Montgomery, M.H.; Uzundag, M.; Baran, A.S.; Bognár, Z.; et al. TESS first look at evolved compact pulsators. Asteroseismology of the pulsating helium-atmosphere white dwarf TIC 257459955. Astron. Astrophys. 2019, 632, A42. [Google Scholar] [CrossRef]
- Baran, A.S.; Koen, C. A Detection Threshold in the Amplitude Spectra Calculated from TESS Time-Series Data. Acta Astron. 2021, 71, 113–121. [Google Scholar] [CrossRef]
- Charpinet, S.; Brassard, P.; Fontaine, G.; Van Grootel, V.; Zong, W.; Giammichele, N.; Heber, U.; Bognár, Z.; Geier, S.; Green, E.M.; et al. TESS first look at evolved compact pulsators. Discovery and asteroseismic probing of the g-mode hot B subdwarf pulsator EC 21494-7018. Astron. Astrophys. 2019, 632, A90. [Google Scholar] [CrossRef]
- Breger, M.; Stich, J.; Garrido, R.; Martin, B.; Jiang, S.Y.; Li, Z.P.; Hube, D.P.; Ostermann, W.; Paparo, M.; Scheck, M. Nonradial pulsation of the delta Scuti star BU CANCRI in the Praesepe cluster. Astron. Astrophys. 1993, 271, 482–486. [Google Scholar]
- Bognár, Z.; Kawaler, S.D.; Bell, K.J.; Schrandt, C.; Baran, A.S.; Bradley, P.A.; Hermes, J.J.; Charpinet, S.; Handler, G.; Mullally, S.E.; et al. TESS first look at evolved compact pulsators. Known ZZ Ceti stars of the southern ecliptic hemisphere as seen by TESS. Astron. Astrophys. 2020, 638, A82. [Google Scholar] [CrossRef]
- Baran, A.S.; Charpinet, S.; Østensen, R.H.; Reed, M.D.; Van Grootel, V.; Lyu, C.; Telting, J.H.; Németh, P. Short-period pulsating hot subdwarf stars observed by TESS. II. Northern ecliptic hemisphere. Astron. Astrophys. 2024, 686, A65. [Google Scholar] [CrossRef]
- Baran, A.S.; Van Grootel, V.; Østensen, R.H.; Worters, H.L.; Sahoo, S.K.; Sanjayan, S.; Charpinet, S.; Nemeth, P.; Telting, J.H.; Kilkenny, D. Short-period pulsating hot-subdwarf stars observed by TESS. I. Southern ecliptic hemisphere. Astron. Astrophys. 2023, 669, A48. [Google Scholar] [CrossRef]
- Watson, C.L.; Henden, A.A.; Price, A. The International Variable Star Index (VSX). Soc. Astron. Sci. Annu. Symp. 2006, 25, 47. [Google Scholar]
- Zhou, A.Y. Unveiling δ Scuti and γ Doradus hybrid pulsation of HD 53166 and HD 53349 plus rich frequencies in HD 52788. New Astron. 2024, 105, 102081. [Google Scholar] [CrossRef]
- Soszyński, I.; Pietrukowicz, P.; Skowron, J.; Udalski, A.; Szymański, M.K.; Skowron, D.M.; Poleski, R.; Kozłowski, S.; Mróz, P.; Ulaczyk, K.; et al. Over 24 000 δ Scuti Stars in the Galactic Bulge and Disk from the OGLE Survey. Acta Astron. 2021, 71, 189–204. [Google Scholar] [CrossRef]
- Read, A.K.; Bedding, T.R.; Mani, P.; Montet, B.T.; Crawford, C.; Hey, D.R.; Li, Y.; Murphy, S.J.; Pedersen, M.G.; Kruger, J. Identifying 850 δ Scuti pulsators in a narrow Gaia colour range with TESS 10-min full-frame images. Mon. Not. R. Astron. Soc. 2024, 528, 2464–2473. [Google Scholar] [CrossRef]
- Lv, C.; Esamdin, A.; Hasanzadeh, A.; Ghazinejad, M.; Pascual-Granado, J.; Mirouh, G.M.; Karimov, R. Statistical analysis of asteroseismic indices and stellar parameters of TESS-observed δ Scuti stars. Astron. Astrophys. 2024, 686, A174. [Google Scholar] [CrossRef]
- Skarka, M.; Henzl, Z. Periodic variable A-F spectral type stars in the southern TESS continuous viewing zone. arXiv 2024, arXiv:2406.12578. [Google Scholar] [CrossRef]
- Gao, X.; Chen, X.; Wang, S.; Liu, J. Classification of Periodic Variable Stars from TESS. Astrophys. J. Suppl. Ser. 2025, 276, 57. [Google Scholar] [CrossRef]
- Zhou, A.Y. Discovery of 226 δ Scuti and γ Doradus Stars near NGC 6871 with TESS. New Astronomy 2025, 114, 102297. [Google Scholar] [CrossRef]
- Gaia Collaboration; Eyer, L.; Rimoldini, L.; Audard, M.; Anderson, R.I.; Nienartowicz, K.; Glass, F.; Marchal, O.; Grenon, M.; Mowlavi, N.; et al. Gaia Data Release 2. Variable stars in the colour-absolute magnitude diagram. Astron. Astrophys. 2019, 623, A110. [Google Scholar] [CrossRef]
- Aerts, C.; Molenberghs, G.; De Ridder, J. Astrophysical properties of 15062 Gaia DR3 gravity-mode pulsators. Pulsation amplitudes, rotation, and spectral line broadening. Astron. Astrophys. 2023, 672, A183. [Google Scholar] [CrossRef]
- Balona, L.A.; Guzik, J.A.; Uytterhoeven, K.; Smith, J.C.; Tenenbaum, P.; Twicken, J.D. The Kepler view of γ Doradus stars. Mon. Not. R. Astron. Soc. 2011, 415, 3531–3538. [Google Scholar] [CrossRef]
- Balona, L.A. Maia variables and other anomalies among pulsating stars. Front. Astron. Space Sci. 2023, 10, 1266750. [Google Scholar] [CrossRef]
- Xing, K.; Zong, W.; Silvotti, R.; Fu, J.N.; Charpinet, S.; Cang, T.; Hermes, J.J.; Ma, X.Y.; Wang, H.; Wang, X.; et al. Flare Hunting in Hot Subdwarf and White Dwarf Stars from Cycles 1–5 of TESS Photometry. Astrophys. J. Suppl. Ser. 2024, 271, 57. [Google Scholar] [CrossRef]
- Hümmerich, S.; Paunzen, E.; Bernhard, K. New Photometrically Variable Magnetic Chemically Peculiar Stars in the ASAS-3 Archive. Astron. J. 2016, 152, 104. [Google Scholar] [CrossRef]
- Southworth, J.; Van Reeth, T. Four bright eclipsing binaries with γ Doradus pulsating components: CM Lac, MZ Lac, RX Dra, and V2077 Cyg. Mon. Not. R. Astron. Soc. 2022, 515, 2755–2765. [Google Scholar] [CrossRef]
- Zhou, A.Y. Variability Census of Legacy Catalogs: New Pulsating Variables and Eclipsing Binaries. 2025. Available online: https://zenodo.org/records/15492075 (accessed on 23 May 2025).
- Kaye, A.B.; Handler, G.; Krisciunas, K.; Poretti, E.; Zerbi, F.M. Gamma Doradus Stars: Defining a New Class of Pulsating Variables. Publ. Astron. Soc. Pac. 1999, 111, 840–844. [Google Scholar] [CrossRef]
- Henry, G.W.; Fekel, F.C.; Henry, S.M. Eleven New γ Doradus Stars. Astron. J. 2005, 129, 2815–2830. [Google Scholar] [CrossRef]
- Henry, G.W.; Fekel, F.C.; Henry, S.M. Photometry and Spectroscopy of 11 γ Doradus Stars. Astron. J. 2007, 133, 1421–1440. [Google Scholar] [CrossRef]
- Henry, G.W.; Fekel, F.C.; Henry, S.M. A Volume-limited Photometric Survey of 114 γ Doradus Candidates. Astron. J. 2011, 142, 39. [Google Scholar] [CrossRef]
- Henry, G.W.; Fekel, F.C.; Williamson, M.H. Nine Bright γ Doradus Variables Discovered with Ground-based Photometry. Astron. J. 2022, 163, 180. [Google Scholar] [CrossRef]
- Zhou, A.Y. Catalogs of Eclipsing Binaries with Pulsating Components, δ Scuti Stars and γ Doradus Stars. 2025. Available online: https://zenodo.org/records/15514549 (accessed on 26 May 2025).
- Wang, J.; Xin, L.P.; Li, H.L.; Li, G.W.; Sun, S.S.; Gao, C.; Han, X.H.; Dai, Z.G.; Liang, E.W.; Wang, X.Y.; et al. Detection of Flare-associated CME Candidates on Two M-dwarfs by GWAC and Fast, Time-resolved Spectroscopic Follow-ups. Astrophys. J. 2021, 916, 92. [Google Scholar] [CrossRef]
- Gaia Collaboration; Babusiaux, C.; van Leeuwen, F.; Barstow, M.A.; Jordi, C.; Vallenari, A.; Bossini, D.; Bressan, A.; Cantat-Gaudin, T.; van Leeuwen, M.; et al. Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron. Astrophys. 2018, 616, A10. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Chowdhury, S.; Johnston, C.; Bowman, D.M.; Aerts, C.; Handler, G.; De Cat, P.; Neiner, C.; David-Uraz, A.; Buzasi, D.; et al. Diverse Variability of O and B Stars Revealed from 2-min Cadence Light Curves in Sectors 1 and 2 of the TESS Mission: Selection of an Asteroseismic Sample. Astrophys. J. Lett. 2019, 872, L9. [Google Scholar] [CrossRef]
- Balona, L.A.; Joshi, S.; Joshi, Y.C.; Sagar, R. Pulsation and rotation of Kepler stars in the NGC 6866 field. Mon. Not. R. Astron. Soc. 2013, 429, 1466–1478. [Google Scholar] [CrossRef]
- Balona, L.A. Rotational light variations in Kepler observations of A-type stars. Mon. Not. R. Astron. Soc. 2011, 415, 1691–1702. [Google Scholar] [CrossRef]
- Kostov, V.B.; Powell, B.P.; Fornear, A.U.; Di Fraia, M.Z.; Gagliano, R.; Jacobs, T.L.; de Lambilly, J.S.; Durantini Luca, H.A.; Majewski, S.R.; Omohundro, M.; et al. The TESS Ten Thousand Catalog: 10,001 uniformly-vetted and -validated Eclipsing Binary Stars detected in Full-Frame Image data by machine learning and analyzed by citizen scientists. arXiv 2025, arXiv:2506.05631. [Google Scholar] [CrossRef]
- Fritzewski, D.J.; Vanrespaille, M.; Aerts, C.; Guo, Z.; Hey, D.; De Ridder, J. Mode identification and ensemble asteroseismology of 119 β Cep stars detected by Gaia light curves and monitored by TESS. Astron. Astrophys. 2025, 698, A253. [Google Scholar] [CrossRef]
- Moździerski, D.; Pigulski, A.; Kołaczkowski, Z.; Michalska, G.; Kopacki, G.; Carrier, F.; Walczak, P.; Narwid, A.; Stęślicki, M.; Fu, J.N.; et al. Ensemble asteroseismology of pulsating B-type stars in NGC 6910. Astron. Astrophys. 2019, 632, A95. [Google Scholar] [CrossRef]
- Yu, J.; Huber, D.; Bedding, T.R.; Stello, D.; Hon, M.; Murphy, S.J.; Khanna, S. Asteroseismology of 16,000 Kepler Red Giants: Global Oscillation Parameters, Masses, and Radii. Astrophys. J. Suppl. Ser. 2018, 236, 42. [Google Scholar] [CrossRef]
- Chaplin, W.J.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Basu, S.; Miglio, A.; Appourchaux, T.; Bedding, T.R.; Elsworth, Y.; García, R.A.; Gilliland, R.L.; et al. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission. Science 2011, 332, 213. [Google Scholar] [CrossRef]
Catalog | Objects | Notes |
---|---|---|
PPM | 468,586 | I–III |
HD | 359,083 | IV |
SAO | 258,997 | IV |
BD | 325,037 | V |
SD | 134,834 | V |
CD | 613,959 | V |
CPD | 450,000 | not sampled |
Total | 2,160,496 | ∼609,009 unique |
Type | New | Reclassified * | Notes |
---|---|---|---|
Sct | 15,380 | 1723 | |
Dor | 18,560 | 1080 | |
( Sct + Dor ) | 4145 | 364 † | subset |
Maia | 2879 | 289 | |
RRLyr | 28 | 1 | |
EA/EB/EW | 2645 | 298 | |
(EA+ Sct / Dor ) | 370 | – | candidates |
(EA+Maia) | 39 | – | candidates |
(EA+ELL) | 3 | – | candidates |
(EA+ROT) | 150 | – | candidates |
Heartbeat stars | 260 | 10 | candidates |
ROT | 16,058 | 802 | |
(ACV) | 1346 | – | candidates |
(ELL) | 1148 | – | |
(ELL+ Sct ) | 18 | – | candidates |
(SXARI) | 122 | – | candidates |
GCAS | 151 | 7 | candidates |
ACYG | 53 | 10 | candidates |
flare/Emline | 520 | 6 | candidates ‡ |
unclassified | 1306 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A.-Y. A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data. Universe 2025, 11, 302. https://doi.org/10.3390/universe11090302
Zhou A-Y. A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data. Universe. 2025; 11(9):302. https://doi.org/10.3390/universe11090302
Chicago/Turabian StyleZhou, Ai-Ying. 2025. "A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data" Universe 11, no. 9: 302. https://doi.org/10.3390/universe11090302
APA StyleZhou, A.-Y. (2025). A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data. Universe, 11(9), 302. https://doi.org/10.3390/universe11090302