Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings
Abstract
:1. ESPRESSO
2. Target List Selection
- can be observed from the VLT site (declination );
- present transitions that allow a high sensitivity ( );
- have a reported uncertainty of ppm.
3. Dark Energy Constraints
- ;
- tanh;
- exp .
- A low-redshift sample, henceforth denoted LOW, of 3000 supernovas uniformly distributed in the redshift range , with an uncertainty on the magnitude of . These numbers are typical of a ‘SNAP-like’ future supernova survey and were also used in [23] and many other subsequent works;
- An intermediate redshift sample, henceforth denoted MID, of 1700 supernovas uniformly distributed in the redshift range and the same as before. This is representative of recent proposals such as DESIRE [24].
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Molaro, P.; Di Marcantonio, P.; et al. ESPRESSO—An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations. Messenger 2013, 153, 6–16. [Google Scholar]
- Webb, J.; King, J.; Murphy, M.; Flambaum, V.; Carswell, R.; Bainbridge, M. Indications of a Spatial Variation of the Fine Structure Constant. Phys. Rev. Lett. 2010, 107, 191101. [Google Scholar] [CrossRef] [PubMed]
- King, J.A. Searching for Variations in the Fine-Structure Constant and the Proton-to-Electron Mass Ratio Using Quasar Absorption Lines. Ph.D. Thesis, School of Physics, New South Wales U., Sydney, Australia, 2012. [Google Scholar]
- Murphy, M.T. Probing Variations in the Fundamental Constants with Quasar Absorption Lines. Ph.D. Thesis, New South Wales U., Sydney, Australia, December 2002. [Google Scholar]
- Chand, H.; Srianand, R.; Petitjean, P.; Aracil, B. Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample. Astron. Astrophys. 2004, 417, 853–871. [Google Scholar] [CrossRef]
- Chand, H.; Petitjean, P.; Srianand, R.; Aracil, B. Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample. Astron. Astrophys. 2005, 430, 47–58. [Google Scholar] [CrossRef]
- Chand, H.; Srianand, R.; Petitjean, P.; Aracil, B.; Quast, R.; Reimers, D. Variation of the fine-structure constant: Very high resolution spectrum of QSO HE 0515-4414. Astron. Astrophys. 2006, 451, 45–56. [Google Scholar] [CrossRef]
- Levshakov, S.A.; Molaro, P.; Lopez, S.; D’Odorico, S.; Centurión, M.; Bonifacio, P.; Agafonova, I.I.; Reimers, D. A new measure of Δα/α at redshift z = 1.84 from very high resolution spectra of Q 1101-264. Astron. Astrophys. 2007, 466, 1077–1082. [Google Scholar]
- Molaro, P.; Reimers, D.; Agafonova, I.I.; Levshakov, S.A. Bounds on the fine structure constant variability from Fe ii absorption lines in QSO spectra. Eur. Phy. J. Spec. Top. 2008, 163, 173–189. [Google Scholar] [CrossRef]
- Molaro, P.; Centurión, M.; Whitmore, J.B.; Evans, T.M.; Murphy, M.T.; Agafonova, I.I.; Bonifacio, P.; D’Odorico, S.; Levshakov, S.A.; Lopez, S.; et al. The UVES Large Program for testing fundamental physics I. Bounds on a change in α towards quasar HE 2217-2818. Astron. Astrophys. 2013, 555, A68. [Google Scholar] [CrossRef]
- Rahmani, H.; Wendt, M.; Srianand, R.; Noterdaeme, P.; Petitjean, P.; Molaro, P.; Whitmore, J.B.; Murphy, M.T.; Centurion, M.; Fathivavsari, H.; et al. The UVES large program for testing fundamental physics—II. Constraints on a change in μ towards quasar HE 0027-1836. Mon. Not. R. Astron. Soc. 2013, 435, 861–878. [Google Scholar] [CrossRef]
- Leite, A.C.O.; Martins, C.J.A.P.; Molaro, P.; Corre, D.; Cristiani, S. Dark energy constraints from ESPRESSO tests of the stability of fundamental couplings. Phys. Rev. D 2016, 94, 123512. [Google Scholar] [CrossRef]
- Leite, A.C.O. Optimization of ESPRESSO Fundamental Physics Tests. Master’s Thesis, University of Porto, Porto, Portugal, November 2015. [Google Scholar]
- Ferreira, M.C.; Frigola, O.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Solà, J. Consistency tests of the stability of fundamental couplings and unification scenarios. Phys. Rev. D 2014, 89, 083011. [Google Scholar] [CrossRef]
- Ferreira, M.; Martins, C. Further consistency tests of the stability of fundamental couplings. Phys. Rev. D 2015, 91, 124032. [Google Scholar] [CrossRef]
- Martins, C.J.A.P. Fundamental cosmology in the E-ELT era: The status and future role of tests of fundamental coupling stability. Gen. Relativ. Gravit. 2015, 47, 1843. [Google Scholar] [CrossRef]
- Amendola, L.; Leite, A.C.O.; Martins, C.J.A.P.; Nunes, N.J.; Pedrosa, P.O.J.; Seganti, A. Variation of fundamental parameters and dark energy: A principal component approach. Phys. Rev. D 2012, 86, 063515. [Google Scholar] [CrossRef]
- Leite, A.C.O.; Martins, C.J.A.P.; Pedrosa, P.O.J.; Nunes, N.J. Fundamental cosmology from precision spectroscopy: Varying couplings. Phys. Rev. D 2014, 90, 063519. [Google Scholar] [CrossRef]
- Leite, A.C.O.; Martins, C.J.A.P. Fundamental cosmology from precision spectroscopy. II. Synergies with supernovae. Phys. Rev. D 2015, 91, 103519. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the rest of the world. Phys. Rev. Lett. 1998, 81, 3067–3070. [Google Scholar] [CrossRef]
- Dvali, G.R.; Zaldarriaga, M. Changing alpha with time: Implications for fifth-force- type experiments and quintessence. Phys. Rev. Lett. 2002, 88, 091303. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Kohri, K. Quintessence Cosmology and Varying α. Prog. Theor. Phys. 2002, 107, 631–636. [Google Scholar] [CrossRef]
- Huterer, D.; Starkman, G. Parametrization of Dark-Energy Properties: A Principal-Component Approach. Phy. Rev. Lett. 2003, 90, 031301. [Google Scholar] [CrossRef] [PubMed]
- Astier, P.; Balland, C.; Brescia, M.; Cappellaro, E.; Carlberg, R.G.; Cavuoti, S.; Della Valle, M.; Gangler, E.; Goobar, A.; Guy, J.; et al. Extending the supernova Hubble diagram to z ∼ 1.5 with the Euclid space mission. Astron. Astrophys. 2014, 572, A80. [Google Scholar] [CrossRef]
Name | M | Max() | # Trans. | Ref. | |||
---|---|---|---|---|---|---|---|
J0350-3811 | 3.02 | 17.3 | −27.9 | 34.2 | 1350 | 2 | [4] |
J0407-4410 | 2.59 | 17.3 | 5.7 | 3.4 * | 2984 | 13 | [3] |
J0431-4855 | 1.35 | 16.5 | −4.0 | 2.3 * | 2990 | 17 | [3] |
J0530-2503 | 2.14 | 18.8 | 6.7 | 3.5 * | 2990 | 7 | [3] |
J1103-2645 | 1.84 | 15.9 | 5.6 | 2.6 | 2890 | 4 | [9] |
J1159+0112 | 1.94 | 17.5 | 5.1 | 4.4 * | 2990 | 12 | [3] |
J1334+1649 | 1.77 | 16.7 | 8.4 | 4.4 | 2990 | 15 | [3] |
HE1347-2457 | 1.43 | 16.3 | −21.3 | 3.6 | 2790 | 3 | [9] |
J2209-1944 | 1.92 | 17.0 | 8.5 | 3.8 | 3879 | 16 | [3] |
HE2217-2818 | 1.69 | 16.0 | 1.3 | 2.4 | 2890 | 6 | [10] |
Q2230+0232 | 1.86 | 18.0 | −9.9 | 4.9 | 3879 | 14 | [4] |
J2335-0908 | 2.15 | 18.0 | 5.2 | 4.3 * | 3879 | 16 | [3] |
J2335-0908 | 2.28 | 18.0 | 7.5 | 3.7 * | 2610 | 7 | [3] |
Q2343+1232 | 2.43 | 17.5 | −12.2 | 3.8 * | 3879 | 11 | [4] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, A.C.O.; Martins, C.J.A.P.; Molaro, P. Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings. Universe 2017, 3, 30. https://doi.org/10.3390/universe3020030
Leite ACO, Martins CJAP, Molaro P. Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings. Universe. 2017; 3(2):30. https://doi.org/10.3390/universe3020030
Chicago/Turabian StyleLeite, Ana C. O., Carlos J. A. P. Martins, and Paolo Molaro. 2017. "Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings" Universe 3, no. 2: 30. https://doi.org/10.3390/universe3020030
APA StyleLeite, A. C. O., Martins, C. J. A. P., & Molaro, P. (2017). Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings. Universe, 3(2), 30. https://doi.org/10.3390/universe3020030