Precessing Black Hole Binaries and Their Gravitational Radiation
Abstract
:1. Introduction
2. Secular Dynamics and Spin Flip-Flop
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Einstein, A. Näherungsweise Integration der Feldgleichungen der Gravitation; Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin; Part 1; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1916; pp. 688–696. [Google Scholar]
- LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Grav 2015, 32, 074001. [Google Scholar]
- LIGO Scientific Collaboration; Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [Green Version]
- LIGO Scientific Collaboration; Virgo Collaboration. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar]
- LIGO Scientific Collaboration; Virgo Collaboration. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar]
- LIGO Scientific Collaboration; Virgo Collaboration. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar]
- Virgo Collaboration. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Grav 2014, 32, 024001. [Google Scholar]
- LIGO Scientific Collaboration; Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar]
- Michimura, Y. On behalf of the KAGRA Collaboration, The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope, TAUP2017. Available online: https://indico.cern.ch/event/606690/contributions/2591396/attachments/1499475/2334708/TAUP2017_michimura.pdf (accessed on 25 January 2018).
- LIGO-India. Available online: http://www.gw-indigo.org/tiki-index.php?page=LIGO-India (accessed on 25 January 2018).
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL, Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Virgo Collaboration; Fermi GBM; INTEGRAL; IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-Hxmt Collaboration; ANTARES Collaboration; The Swift Collaboration; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar]
- LIGO Scientific Collaboration; Virgo Collaboration; 1m2H Collaboration; Dark Energy Camera GW-EM Collaboration; DES Collaboration; DLT40 Collaboration; Las Cumbres Observatory Collaboration; VINROUGE Collaboration & MASTER Collaboration. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. R. Acad. Amst. 1904, 6, 1903–1904. [Google Scholar]
- Poincaré, H. Sur la dynamique de l’électron. Inst. Fr. Acad. Sci. C. R. 1905, 140, 1504–1508. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at = 13TeV with the ATLAS detector. arXiv 2017, arXiv:1712.08119. [Google Scholar]
- IceCube Collaboration. Search for sterile neutrino mixing using three years of IceCube DeepCore data. Phys. Rev. D 2017, 95, 112002. [Google Scholar]
- LUX Collaboration. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. D 2017, 118, 021303. [Google Scholar]
- Savvidis, I.; Pivovaroff, M.J.; Kotthaus, R.; Eleftheriadis, C.; Krčmar, M.; García, J.A.; Villar, J.; Riege, H.; Ferrer-Ribas, E.; Rashba, T.; et al. CAST search for sub-eV mass solar axions with 3He buffer gas. Phys. Rev. Lett. 2011, 107, 261302. [Google Scholar]
- Choudhury, D.; Ghosh, K. Bounds on Universal Extra Dimension from LHC Run I and II data. arXiv 2016, arXiv:1606.04084. [Google Scholar]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; Freeman, K.C.; et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. Astrophys. J. 2000, 542, 281–307. [Google Scholar] [CrossRef]
- María Ezquiaga, J.; Zumalacárregui, M. Dark Energy after GW170817: dead ends and the road ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed]
- LIGO Scientific Collaboration; Virgo Collaboration. Tests of General Relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101. [Google Scholar]
- Damour, T.; Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst. Henri Poincaré 1985, 43, 107–132. [Google Scholar]
- Kidder, L.E.; Will, C.M.; Wiseman, A.G. Spin effects in the inspiral of coalescing compact binaries. Phys. Rev. D 1993, 47, R4183. [Google Scholar] [CrossRef]
- Kidder, L.E. Coalescing binary systems of compact objects to (post)5/2 -Newtonian order. V. Spin effects. Phys. Rev. D 1995, 52, 821. [Google Scholar] [CrossRef]
- Rieth, R.; Schäfer, G. Spin and tail effects in the gravitational-wave emission of compact binaries. Class. Quantum Gravity 1997, 14, 2357–2380. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Perjés, Z.I.; Vasúth, M. Spin effects in gravitational radiation backreaction III. Compact binaries with two spinning components. Phys. Rev. D 1998, 58, 124001. [Google Scholar] [CrossRef]
- Gergely, L.Á. Spin-spin effects in radiating compact binaries. Phys. Rev. D 2000, 61, 024035. [Google Scholar] [CrossRef]
- Gergely, L.Á. Second post-Newtonian radiative evolution of the relative orientations of angular momenta in spinning compact binaries. Phys. Rev. D 2000, 62, 024007. [Google Scholar] [CrossRef]
- Poisson, E. Gravitational waves from inspiraling compact binaries: The quadrupole-moment term. Phys. Rev. D 1998, 57, 5287–5290. [Google Scholar] [CrossRef] [Green Version]
- Gergely, L.Á.; Keresztes, Z. Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction. Phys. Rev. D 2003, 67, 024020. [Google Scholar] [CrossRef]
- Gergely, L.Á. Spinning compact binary inspiral: Independent variables and dynamically preserved spin configurations. Phys. Rev. D 2010, 81, 084025. [Google Scholar] [CrossRef]
- Gergely, L.Á. Spinning compact binary inspiral. II. Conservative angular dynamics. Phys. Rev. D 2010, 82, 104031. [Google Scholar]
- Apostolatos, T.A.; Cutler, C.; Sussman, G.J.; Thorne, K.S. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. Phys. Rev. D 1994, 49, 6274–6297. [Google Scholar] [CrossRef]
- Racine, É. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction. Phys. Rev. D 2008, 78, 044021. [Google Scholar] [CrossRef]
- González, J.A.; Sperhake, U.; Brügmann, B.; Hannam, M.; Husa, S. Maximum Kick from Nonspinning Black-Hole Binary Inspiral. Phys. Rev. Lett. 2007, 98, 091101. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, M.; Lousto, C.O.; Zlochower, Y.; Merritt, D. Maximum Gravitational Recoil. Phys. Rev. Lett. 2007, 98, 231102. [Google Scholar] [CrossRef] [PubMed]
- Lousto, C.O.; Zlochower, Y. Hangup Kicks: Still Larger Recoils by Partial Spin/Orbit Alignment of Black-Hole Binaries. Phys. Rev. Lett. 2011, 107, 231102. [Google Scholar] [CrossRef] [PubMed]
- Gergely, L.Á.; Keresztes, Z. Spinning compact binary dynamics and chameleon orbits. Phys. Rev. D 2015, 91, 024012. [Google Scholar]
- Barker, B.M.; O’Connell, R.F. Derivation of the Equations of Motion of a Gyroscope from the Quantum Theory of Gravitation. Phys. Rev. D 1970, 2, 1428–1435. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 1975, 12, 329. [Google Scholar] [CrossRef]
- Kesden, M.; Gerosa, D.; O’Shaughnessy, R.; Berti, E.; Sperhake, U. Effective potentials and morphological transitions for binary black-hole spin precession. Phys. Rev. Lett. 2015, 114, 081103. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, D.; Kesden, M.; Sperhake, U.; Berti, E.; O’Shaughnessy, R. Multi-timescale analysis of phase transitions in precessing black-hole binaries. Phys. Rev. D 2015, 92, 064016. [Google Scholar] [CrossRef]
- Chatziioannou, K.; Klein, A.; Cornish, N.; Yunes, N. Analytic gravitational waveforms for generic precessing compact binaries. arXiv 2016, arXiv:1606.03117. [Google Scholar]
- Tápai, M.; Keresztes, Z.; Gergely, L.Á. Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops. arXiv 2015, arXiv:1606.03117. [Google Scholar]
- Lousto, C.O.; Healy, J. Flip-flopping binary black holes. Phys. Rev. Lett. 2015, 114, 141101. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, D.; Kesden, M.; O’Shaughnessy, R.; Klein, A.; Berti, E.; Sperhake, U.; Trifirň, D. Precessional instability in binary black holes with aligned spins. Phys. Rev. Lett. 2015, 115, 141102. [Google Scholar] [CrossRef] [PubMed]
- Lousto, C.O.; Healy, J. Unstable flip-flopping spinning binary black holes. Phys.Rev. D 2016, 93, 124074. [Google Scholar] [CrossRef]
- Lousto, C.O.; Healy, J.; Nakano, H. Spin flips in generic black hole binaries. Phys. Rev. D 2016, 93, 044031. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Biermann, P.L. The spin-flip phenomenon in supermassive black hole binary mergers. Astrophys. J. 2009, 697, 1621. [Google Scholar] [CrossRef]
- Gopal-Krishna; Biermann, P.L.; Gergely, L.Á.; Wiita, P.J. On the origin of X-shaped radio galaxies. Res. Astron. Astrophys. 2012, 12, 127–146. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gergely, L.Á.; Keresztes, Z.; Tápai, M. Precessing Black Hole Binaries and Their Gravitational Radiation. Universe 2018, 4, 40. https://doi.org/10.3390/universe4020040
Gergely LÁ, Keresztes Z, Tápai M. Precessing Black Hole Binaries and Their Gravitational Radiation. Universe. 2018; 4(2):40. https://doi.org/10.3390/universe4020040
Chicago/Turabian StyleGergely, László Á., Zoltán Keresztes, and Márton Tápai. 2018. "Precessing Black Hole Binaries and Their Gravitational Radiation" Universe 4, no. 2: 40. https://doi.org/10.3390/universe4020040
APA StyleGergely, L. Á., Keresztes, Z., & Tápai, M. (2018). Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 4(2), 40. https://doi.org/10.3390/universe4020040