Anomalous Electromagnetic Transport in Compact Stars
Abstract
:1. Introduction
2. The MCDCW Phase
3. Axion Electrodynamics in the MDCDW Phase
4. Anomalous Transport in the MDCDW Phase
5. Conclusions
Acknowledgments
Author Contributions
References
- Demorest, P.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. Shapiro delay measurement of a two solar mass neutron star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, J.; Paulo, C.C.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; et al. A massive pulsar in a compact relativistic binary. Science 2013, 340, 1233232. [Google Scholar] [CrossRef] [PubMed]
- Ambartsumyan, V.A.; Saakyan, G.S. The degenerate superdense gas of elementary particles. Sov. Astron. 1960, 4, 187–201. [Google Scholar]
- Glendenning, N.K. The hyperon composition of neutron stars. Phys. Lett. B 1982, 114, 392–396. [Google Scholar] [CrossRef]
- Glendenning, N.K. Neutron stars are giant hypernuclei? Astrophys. J. 1985, 293, 470–493. [Google Scholar] [CrossRef]
- Weber, F.; Weigel, M.K. Baryon composition and macroscopic properties of neutron stars. Nucl. Phys. A 1989, 505, 779–822. [Google Scholar] [CrossRef]
- Knorren, R.; Prakash, M.; Ellis, P.J. Strangeness in hadronic stellar matter. Phys. Rev. C 1995, 52, 3470–3482. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Sagawa, H.; Wu, C.-X.; Zhao, E.-G. Hypernuclei in the deformed Skyrme-Hartree-Fock approach. Phys. Rev. C 2007, 76, 034312. [Google Scholar]
- Zhou, X.-R.; Polls, A.; Schulze, H.-J.; Vidaña, I. Lambda hyperons and the neutron drip line. Phys. Rev. C 2008, 78, 054306. [Google Scholar] [CrossRef]
- Sammarruca, F. Effects of Lambda hyperons on the nuclear equation of state in a Dirac-Brueckner-Hartree-Fock model. Phys. Rev. C 2009, 79, 034301. [Google Scholar] [CrossRef]
- Lonardoni, D.; Pederiva, F.; Gandolfi, S. Accurate determination of the interaction between hyperons and nucleons from auxiliary field diffusion Monte Carlo calculations. Phys. Rev. C 2014, 89, 014314. [Google Scholar] [CrossRef]
- Katayama, T.; Saito, K. Hyperons in neutron stars. Phys. Lett. B 2015, 747, 43–47. [Google Scholar] [CrossRef]
- Glendenning, N.K. Hyperons in neutron stars. Z. Phys. A 1987, 326, 57–64. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hypernuclear matter in the Bruckner-Hartree-Fock approximation. Phys. Lett. B 1995, 355, 21–26. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hyperonic nuclear matter in Bruckner theory. Phys. Rev. C 1998, 57, 704. [Google Scholar] [CrossRef]
- Baldo, M.; Burgio, G.F.; Schulze, H.-J. Hyperon stars in the Brueckner-Bethe-Goldstone theory. Phys. Rev. C 2000, 61, 055801. [Google Scholar] [CrossRef] [Green Version]
- Vidaña, I.; Polls, A.; Ramos, A.; Engvik, L.; Hjorth-Jensen, M. Hyperon-hyperon interactions and properties of neutron star matter. Phys. Rev. C 2000, 62, 035801. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Polls, A.; Ramos, A.; Vidaña, I. Maximum mass of neutron stars. Phys. Rev. C 2006, 73, 058801. [Google Scholar] [CrossRef]
- Djapo, H.; Schaefer, B.-J.; Wambach, J. Appearance of hyperons in neutron stars. Phys. Rev. C 2010, 81, 035803. [Google Scholar]
- Schulze, H.-J.; Rijken, T. Maximum mass of hyperon stars with the Nijmegen ESC-08 model. Phys. Rev. C 2011, 84, 035801. [Google Scholar] [CrossRef]
- Bednarek, I.; Haensel, P.; Zdunik, L.; Bejger, M.; Mάnka, R. Hyperons in neutron-star cores and two-solar-mass pulsar. Astron. Astrophys. 2012, 157, 543. [Google Scholar]
- Weissenborn, S.; Chatterjee, D.; Schaffner-Bielich, J. Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry. Phys. Rev. C 2012, 85, 065802. [Google Scholar] [CrossRef]
- Weissenborn, S.; Chatterjee, D.; Schaffner-Bielich, J. Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry (Erratum). Phys. Rev. C 2014, 90, 019904. [Google Scholar] [CrossRef]
- Oertel, M.; Providência, C.; Gulminelli, F.; Raduta, A.R. Hyperons in neutron star matter within relativistic mean-field models. J. Phys. G 2015, 42, 075202. [Google Scholar] [CrossRef]
- Maslov, K.A.; Kolomeitsev, E.E.; Voskresensky, D.N. Solution of the hyperon puzzle within a relativistic mean-field model. Phys. Lett. B 2015, 748, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Takatsuka, T.; Nishizaki, S.; Yamamoto, Y. Necessity of extra repulsion in hypernuclear systems: Suggestion from neutron stars. Eur. Phys. J. A 2002, 13, 213. [Google Scholar] [CrossRef]
- Takatsuka, T.; Nishizaki, S.; Tamagaki, R. Three-Body force as an extra repulsion suggested from hyperon-mixed neutron stars. Prog. Theor. Phys. Suppl. 2002, 174, 80–83. [Google Scholar] [CrossRef]
- Vidaña, I.; Logoteta, D.; Providência, C.; Polls, A.; Bombaci, I. Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars. Eur. Phys. Lett. 2011, 94, 11002. [Google Scholar]
- Yamamoto, Y.; Furumoto, T.; Yasutake, B.; Rijken, T.A. Multi-pomeron repulsion and the neutron-star mass. Phys. Rev. C 2013, 88, 022801. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Furumoto, T.; Yasutake, B.; Rijken, T.A. Hyperon mixing and universal many-body repulsion in neutron stars. Phys. Rev. C 2014, 90, 045805. [Google Scholar] [CrossRef]
- Lonardoni, D.; Lovato, A.; Gandolfi, S.; Pederiva, F. Hyperon puzzle: Hints from Quantum Monte Carlo calculations. Phys. Rev. Lett. 2015, 114, 092301. [Google Scholar] [CrossRef] [PubMed]
- Weber, F. Strange quark matter and compact stars. Prog. Part Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef]
- Lattimer, J.M. Neutron star equation of state. New Astron. Rev. 2010, 54, 101. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272. [Google Scholar] [CrossRef]
- Nice, D.J.; Splaver E., M.; Stairs, I.H.; Loehmer, O.; Jessner, A.; Kramer, M.; Cordes, J.M. A 2.1 solar mass pulsar measured by relativistic orbital decay. Astrophys. J. 2005, 634, 1242–1249. [Google Scholar] [CrossRef]
- Barret, D.; Olive, J.F.; Miller, M.C. An abrupt drop in the coherence of the lower kilohertz QPO in 4U 1636-536. Mon. Not. Roy. Astron. Soc. 2005, 361, 855–860. [Google Scholar] [CrossRef]
- Trümper, J.E.; Burwitz, V.; Haberl, F.; Zavlin, V.E. The puzzles of RX J1856.5-3754: Neutron star or quark star? Nucl. Phys. Proc. Suppl. 2004, 132, 560–565. [Google Scholar] [CrossRef]
- Özel, F. Soft equations of state for neutron-star matter ruled out by EXO 0748-676. Nature 2006, 441, 1115–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alford, M.G.; Schmitt, A.; Rajagopal, K.; Schäfer, T. Color superconductivity in dense quark matter. Rev. Mod. Phys. 2008, 80, 1455–1515. [Google Scholar] [CrossRef]
- Huang, M. QCD phase diagram at high temperature and density. arXiv, 2010; arXiv:1001.3216. [Google Scholar]
- Schmitt, A. Dense Matter in Compact Stars, Lecture Notes in Physics v. 811; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef]
- Kitazawa, M.; Koide, T.; Kunihiro, T.; Nemoto, Y. Chiral and color superconducting phase transitions with vector interaction in a simple model. Prog. Theor. Phys. 2002, 108, 929–951. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Paulucci, L. Gluon effects on the equation of state of color superconducting strange stars. Phys. Rev. D 2015, 92, 043010. [Google Scholar] [CrossRef]
- Deryagin, D.V.; Grigoriev, D.Y.; Rubakov, V.A. Standing wave ground state in high density, zero temperature QCD at large N(c). Int. J. Mod. Phys. A 1992, 7, 659–681. [Google Scholar] [CrossRef]
- Shuster, E.; Son, D.T. On finite density QCD at large N(c). Nucl. Phys. B 2000, 573, 434–446. [Google Scholar] [CrossRef]
- Park, B.-Y.; Rho, M.; Wirzba, A.; Zahed, I. Dense QCD: Overhauser or BCS pairing? Phys. Rev. D 2000, 62, 034015. [Google Scholar] [CrossRef]
- Kojo, T.; Hidaka, Y.; McLerran, L.; Pisarski, R.D. Quarkyonic chiral spirals. Nucl. Phys. A 2010, 843, 37–58. [Google Scholar] [CrossRef]
- Kojo, T.; Hidaka, Y.; Fukushima, K.; McLerran, L.D.; Pisarski, R.D. Interweaving chiral spirals. Nucl. Phys. A 2012, 875, 94–138. [Google Scholar] [CrossRef]
- Kojo, T.; Pisarski, R.D.; Tsvelik, A.M. Covering the Fermi surface with patches of quarkyonic chiral spirals. Phys. Rev. D 2010, 82, 074015. [Google Scholar] [CrossRef]
- Kojo, T. A (1+1) dimensional example of quarkyonic matter. Nucl. Phys. A 2012, 877, 70–94. [Google Scholar] [CrossRef]
- Nickel, D. How many phases meet at the chiral critical point? Phys. Rev. Lett. 2009, 103, 072301. [Google Scholar] [CrossRef] [PubMed]
- Nickel, D. Inhomogeneous phases in the Nambu-Jona-Lasino and quark-meson model. Phys. Rev. D 2009, 80, 074025. [Google Scholar] [CrossRef]
- Rapp, R.; Shuryak, E.; Zahed, I. A Chiral crystal in cold QCD matter at intermediate densities? Phys. Rev. D 2001, 63, 034008. [Google Scholar] [CrossRef]
- Gubina, N.V.; Klimenko, K.G.; Kurbanov, S.G.; Zhukovsky, V.C. Inhomogeneous charged pion condensation phenomenon in the NJL2 model with quark number and isospin chemical potentials. Phys. Rev. D 2012, 86, 085011. [Google Scholar] [CrossRef]
- Carignano, S.; Nickel, D.; Buballa, M. Influence of vector interaction and Polyakov loop dynamics on inhomogeneous chiral symmetry breaking phases. Phys. Rev. D 2010, 82, 054009. [Google Scholar] [CrossRef]
- Abuki, H.; Ishibashi, D.; Suzuki, K. Crystalline chiral condensates off the tricritical point in a generalized Ginzburg-Landau approach. Phys. Rev. D 2012, 85, 074002. [Google Scholar] [CrossRef]
- Klevansky, S. The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 1992, 64, 649–708. [Google Scholar] [CrossRef]
- Anglani, R.; Casalbuoni, R.; Ciminale, M.; Ippolito, N.; Gatto, R.; Mannarelli, M.; Ruggieri, M. Crystalline color superconductors. Rev. Mod. Phys. 2014, 86, 509–561. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Gatto, R.; Mannarelli, M.; Nardulli, G.; Ruggieri, M. Meissner masses in the gCFL phase of QCD. Phys. Lett. B 2005, 605, 362–368. [Google Scholar] [CrossRef]
- Fukushima, K. Analytical and numerical evaluation of the Debye and Meissner masses in dense neutral three-flavor quark matter. Phys. Rev. D 2005, 72, 074002. [Google Scholar] [CrossRef]
- Reddy, S.; Rupak, G. Phase structure of 2-flavor quark matter: Heterogeneous superconductors. Phys. Rev. C 2005, 71, 025201. [Google Scholar] [CrossRef]
- Fukushima, K. Characterizing the Larkin-Ovchinnikov-Fulde-Ferrel phase induced by the chromomagnetic instability. Phys. Rev. D 2006, 73, 094016. [Google Scholar] [CrossRef]
- Hashimoto, M. Manifestation of instabilities in Nambu-Jona-Lasinio type models. Phys. Lett. B 2006, 642, 93–99. [Google Scholar] [CrossRef]
- Huang, M. Spontaneous current generation in the 2SC phase. Phys. Rev. D 2006, 73, 045007. [Google Scholar] [CrossRef]
- Larkin, A.I.; Ovchinnikov, Y.N. Nonuniform state of superconductors. Sov. Phys. JETP 1965, 20, 762–770. [Google Scholar]
- Fulde, P.; Ferrell, R.A. Superconductivity in a strong spin-exchange field. Phys. Rev. 1964, 135, A550–A563. [Google Scholar] [CrossRef]
- Alford, M.G.; Bowers, J.A.; Rajagopal, K. Crystalline color superconductivity. Phys. Rev. D 2001, 63, 074016. [Google Scholar] [CrossRef]
- Bowers, J.A.; Rajagopal, K. The crystallography of color superconductivity. Phys. Rev. D 2001, 66, 065002. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 2004, 76, 263–320. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Chromomagnetic instability and induced magnetic field in neutral two-flavor color superconductivity. Phys. Rev. D 2007, 76, 114012. [Google Scholar] [CrossRef]
- Dong, L.; Shapiro, S.L. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay. ApJ 1991, 383, 745–751. [Google Scholar]
- Ferrer, E.J.; de la Incera, V.; Keith, J.P.; Portillo, I.; Springsteen, P.L. Equation of state of a dense and magnetized fermion system. Phys. Rev. C 2010, 82, 065802. [Google Scholar] [CrossRef]
- Fushiki, I.; Gudmundsson, E.H.; Pethick, C.J. Surface structure of neutron stars with high magnetic fields. Astrophys. J. 1989, 342, 958–975. [Google Scholar] [CrossRef]
- Abrahams, A.M.; Shapiro, S.L. Equation of state in a strong magnetic field-Finite temperature and gradient corrections. Astrophys. J. 1991, 374, 652–667. [Google Scholar] [CrossRef]
- Fushiki, I.; Gudmundsson, E.H.; Yngvason, J.; Pethick, C.J. Matter in a magnetic field in the Thomas-Fermi and related theories. Ann. Phys. 1992, 216, 29–72. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, D.; Pal, S. Dense nuclear matter in a strong magnetic field. Phys. Rev. Lett. 1997, 78, 2898–2901. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Chakrabarty, S.; Dey, P. Rapid cooling of magnetized neutron stars. Phys. Rev. D 1998, 58, 121301. [Google Scholar] [CrossRef]
- Broderick, A.; Prakash, M.; Lattimer, J.M. The Equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 2000, 537, 351–367. [Google Scholar] [CrossRef]
- Cardall, C.Y.; Prakash, M.; Lattimer, J.M. Effects of strong magnetic fields on neutron star structure. Astrophys. J. 2001, 554, 322–339. [Google Scholar] [CrossRef]
- Suh, I.-S.; Mathews, G.J. Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 2001, 546, 1126–1136. [Google Scholar] [CrossRef]
- Perez-Martinez, A.; Perez-Rojas, H.; Mosquera-Cuesta, H.J. Magnetic collapse of a neutron gas: Can magnetars indeed be formed? Eur. Phys. J. C 2003, 29, 111–123. [Google Scholar] [CrossRef]
- Wei, F.X.; Mao, G.J.; Ko, C.M.; Kisslinger, L.S.; Stoecker, H.; Greiner, W. Effect of isovector-scalar meson on neutron star matter in strong magnetic fields. J. Phys. G 2006, 32, 47–61. [Google Scholar] [CrossRef]
- Hardings, A.K.; Lai, D. Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 2006, 69, 2631. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, P.-Q.; Liu, L.-G. The influence of the magnetic field on the properties of neutron star matter. Mod. Phys. Lett. A 2007, 22, 623–630. [Google Scholar] [CrossRef]
- Rabhi, A.; Providencia, C.; da Providencia, J. Stellar matter with a strong magnetic field within density-dependent relativistic models. J. Phys. G 2008, 35, 125201. [Google Scholar] [CrossRef]
- Gonzalez-Felipe, R.; Perez-Martinez, A.; Perez-Rojas, H.; Orsaria, M. Magnetized strange quark matter and magnetized strange quark stars. Phys. Rev. C 2008, 77, 015807. [Google Scholar] [CrossRef]
- Yue, P.; Yang, F.; Shen, H. Properties of hyperonic matter in strong magnetic fields. Phys. Rev. C 2009, 79, 025803. [Google Scholar] [CrossRef]
- Menezes, D.P.; Benghi Pinto, M.; Avancini, S.S.; Perez Martinez, A.; Providencia, C. Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio Model. Phys. Rev. C 2009, 79, 035807. [Google Scholar] [CrossRef]
- Menezes, D.P.; Benghi Pinto, M.; Avancini, S.S.; Providencia, C. Quark matter under strong magnetic fields in the SU(3) Nambu-Jona-Lasinio model. Phys. Rev. C 2009, 80, 065805. [Google Scholar] [CrossRef]
- Paulucci, L.; Ferrer, E.J.; de la Incera, V.; Horvath, J.E. Equation of state for the MCFL phase and its implications for compact star models. Phys. Rev. D 2011, 83, 043009. [Google Scholar] [CrossRef]
- Fayazbakhsh, S.; Sadooghi, N. Anomalous magnetic moment of hot quarks, inverse magnetic catalysis, and reentrance of the chiral symmetry broken phase. Phys. Rev. D 2014, 90, 105030. [Google Scholar] [CrossRef]
- Carignano, S.; Ferrer, E.J.; de la Incera, V.; Paulucci, L. Crystalline chiral condensates as a component of compact stars. Phys. Rev. D 2015, 92, 105018. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Quantum theory of an electron gas in intense magnetic fields. Phys. Rev. 1968, 173, 1210–1219. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Thermodynamic properties of a magnetized fermi gas. Phys. Rev. 1968, 173, 1220. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Magnetic moment of a magnetized fermi gas. Phys. Rev. 1968, 173, 1229–1235. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Canuto, V.; Fassio-Canuto, L. Quantum Theory of an Electron Gas with Anomalous Magnetic Moments in Intense Magnetic Fields. Phys. Rev. 1968, 176, 1438–1442. [Google Scholar] [CrossRef]
- Chaichian, M.; Masood, S.S.; Montonen, C.; Perez Martinez, A.; Perez Rojas, H. Quantum magnetic and gravitational collapse. Phys. Rev. Lett. 2000, 84, 5261–5264. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S. Quark matter in strong magnetic field. Phys. Rev. D 1996, 54, 1306–1316. [Google Scholar] [CrossRef]
- Broderick, A.; Prakash, M.; Lattimer, J.M. Effects of strong magnetic fields in strange baryonic matter. Phys. Lett. B 2002, 531, 167–174. [Google Scholar] [CrossRef]
- Khalilov, V.R. Macroscopic effects in cold magnetized nucleons and electrons with anomalous magnetic moments. Phys. Rev. D 2002, 65, 056001. [Google Scholar] [CrossRef]
- Mao, G.; Kondratyev, V.N.; Iwamoto, A.; Li, Z.; Wu, X.; Greiner, W. Neutron star composition in strong magnetic fields. Chin. Phys. Lett. 2003, 20, 1238–1241. [Google Scholar]
- Mao, G.; Iwamoto, A.; Li, Z. Study of the neutron star structure in strong magnetic fields including the anomalous magnetic moments. Chin. J. Astron. Astrophys. 2003, 3, 359–374. [Google Scholar] [CrossRef]
- Perez Martinez, A.; Perez Rojas, H.; Mosquera Cuesta, H.J.; Boligan, M.; Orsaria, M.G. Quark stars and quantum-magnetically induced collapse. Int. J. Mod. Phys. D 2005, 14, 1959. [Google Scholar] [CrossRef]
- Felipe, R.G.; Martinez, A.P.; Rojas, H.P.; Orsaria, M. Magnetized strange quark matter and magnetized strange quark stars. Phys. Rev. C 2008, 77, 015807. [Google Scholar] [CrossRef]
- Perez-Garcia, M.A.; Navarro, J.; Polls, A. Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces. Phys. Rev. C 2009, 80, 025802. [Google Scholar] [CrossRef]
- Rabhi, A.; Pais, H.; Panda, P.K.; Providencia, C.J. Quark-hadron phase transition in a neutron star under strong magnetic fields. Phys. G 2009, 36, 115204. [Google Scholar] [CrossRef]
- Dexheimer, V.; Negreiros, R.; Schramm, S. Hybrid Stars in a strong magnetic field. Eur. Phys. J. A 2012, 48, 189. [Google Scholar] [CrossRef]
- Strickland, M.; Dexheimer, V.; Menezes, D.P. Bulk properties of a Fermi gas in a magnetic field. Phys. Rev. D 2012, 86, 125032. [Google Scholar] [CrossRef]
- Dong, J.; Lombardo, U.; Zuo, W.; Zhang, H. Dense nuclear matter and symmetry energy in strong magnetic fields. Nucl. Phys. A 2013, 898, 32–42. [Google Scholar] [CrossRef]
- Casali, R.H.; Castro, L.B.; Menezes, D.P. Hadronic and hybrid stars subject to density dependent magnetic fields. Phys. Rev. C 2014, 89, 015805. [Google Scholar] [CrossRef]
- Manreza Paret, D.; Perez Martinez, A.; Ferrer E., J.; de la Incera, V. Effects of AMM on the EoS of magnetized dense systems. Astron. Nachr. 2014, 335, 685–690. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Manreza Peret, D.; Perez Martinez, A.; Sanchez, A. Insignificance of the anomalous magnetic moment of charged fermions for the equation of state of a magnetized and dense medium. Phys. Rev. D 2015, 91, 085041. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Dissipationless Hall current in dense quark matter in a magnetic field. Phys. Lett. B 2017, 69, 208–212. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, I. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef] [PubMed]
- Zyuzin, A.A.; Burkov, A.A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 2012, 86, 115133. [Google Scholar] [CrossRef]
- Frolov, I.E.; Zhukovsky, V.C.; Klimenko, K.G. Chiral density waves in quark matter within the Nambu-Jona-Lasinio model in an external magnetic field. Phys. Rev. D 2010, 82, 076002. [Google Scholar] [CrossRef]
- Tatsumi, T.; Nishiyama, K.; Karasawa, S. Novel Lifshitz point for chiral transition in the magnetic field. Phys. Lett. B 2015, 743, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Two Applications of Axion Electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Magnetic color flavor locking phase in high density QCD. Phys. Rev. Lett. 2005, 152002. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Color-superconducting gap in the presence of a magnetic field. Nucl. Phys. B 2006, 747, 88–112. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Colour superconductivity in a strong magnetic field. J. Phys. A 2006, 39, 6349–6355. [Google Scholar] [CrossRef]
- Feng, B.; Ferrer, E.J.; de la Incera, V. Magnetoelectric effect in strongly magnetized color superconductivity. Phys. Lett. B 2011, 706, 232–238. [Google Scholar] [CrossRef]
- Qi, X.-L.; Hughes, T.L.; Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Bermudez, A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.; Martin-Delgado, M.A. Wilson fermions and axion electrodynamics in optical lattices. Phys. Rev. Lett. 2010, 105, 190404. [Google Scholar] [CrossRef] [PubMed]
- Glendenning, N.K. Compact Stars, Nuclear Physics, Particle Physics, General Relativity; Springer: New York, NY, USA, 2000. [Google Scholar]
- Harding, A.K.; Lai, D. Physics of strongly magnetized neutron stars. Rept. Prog. Phys. 2006, 69, 2631–2708. [Google Scholar] [CrossRef]
- Spruit, H.C. Origin of neutron star magnetic fields. AIP Conf. Proc. 2008, 983, 391–398. [Google Scholar]
- Li, R.; Wang, J.-L.; Qi, X.-C.; Zhang, S. Dynamical axion field in topological magnetic insulators. Nat. Phys. 2010, 6, 284–288. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Exploring dense and cold QCD in magnetic fields. Eur. Phys. J. A 2016, 52, 266. [Google Scholar] [CrossRef]
- Odyniec, G. The RHIC beam energy scan program in STAR and what’s next... J. Phys. Conf. Ser. 2013, 455, 012037. [Google Scholar] [CrossRef]
- Ablyazimov, T.; Abuhoza, A.; Adak, P.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. [CBM Collaboration] Challenges in QCD matter physics –The scientific program of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Deng, W.-T.; Huang, X.-G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 2012, 85, 044907. [Google Scholar] [CrossRef]
- Toneev, V.; Rogachevsky, O.; Voronyuk, V. Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions. Eur. Phys. J. A 2016, 52, 264. [Google Scholar] [CrossRef]
- Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef] [PubMed]
- Borisenko, S.; Gibson, Q.; Evtushinsky, D.; Zabolotnyy, V.; Buchner, B.; Cava, R.J. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 2014, 113, 027603. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H.; Bansil, A.; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.K.; Jiang, J.; Zhou, B.; Wang, Z.J.; Zhang, Y.; Weng, H.M.; Prabhakaran, D.; Mo, S.-K.; Peng, H.; Dudin, P.; et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mat. 2014, 13, 677–681. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, E.J.; De la Incera, V. Anomalous Electromagnetic Transport in Compact Stars. Universe 2018, 4, 54. https://doi.org/10.3390/universe4030054
Ferrer EJ, De la Incera V. Anomalous Electromagnetic Transport in Compact Stars. Universe. 2018; 4(3):54. https://doi.org/10.3390/universe4030054
Chicago/Turabian StyleFerrer, Efrain J., and Vivian De la Incera. 2018. "Anomalous Electromagnetic Transport in Compact Stars" Universe 4, no. 3: 54. https://doi.org/10.3390/universe4030054
APA StyleFerrer, E. J., & De la Incera, V. (2018). Anomalous Electromagnetic Transport in Compact Stars. Universe, 4(3), 54. https://doi.org/10.3390/universe4030054