The Case for Nonlocal Modifications of Gravity
Abstract
:1. Introduction
- (1)
- The amount of “dark” stress-energy needed to make general relativity work strains credulity.
- (2)
- (3)
- Although fundamental nonlocality seems problematic, nonlocal corrections to the effective field equations from loops of massless particles can give macroscopic effects, and those associated with the vast amount of inflationary particle production become nonperturbatively strong.
2. Shortcomings of Dark Matter and Energy
2.1. The Willing Suspension of Disbelief
2.2. Unexplained Regularities of Cosmic Structures
- The Baryonic Tully–Fisher Relation between the asymptotic rotational velocity v and the baryonic mass M of some structure, where [14];
- Milgrom’s Law that dark matter always starts being necessary when the acceleration drops below [15];
- Freeman’s Law for the surface density [16]; and
- Sancisi’s Law that features in luminous matter follow features in rotation curves and vice versa [17].
2.3. Fine Tuning Problems
- Why is so spatially homogeneous?
- Why is so small?
- Why is no fifth force observed?
3. Options for Modifying Gravity
- Is the gravitational force entirely carried by the metric or are other fields involved?
- Is full general coordinate invariance preserved?
- Are the field equations local or nonlocal?
3.1. Problems with Models
3.2. Problems with Fundamental Nonlocality
great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it.
4. Modified Gravity as Vacuum Polarization
4.1. Macroscopic Nonlocality in Flat Space QED
4.2. Inflationary Particle Production
4.3. Corrections to EM and GR During Inflation
4.4. -Driven Inflation
5. Answers to My Critics
5.1. “Your Effects are Gauge Dependent”
5.2. “IR Gravitons Have Small Curvature”
5.3. “Your Effects Are Not Observable”
5.4. “Your Calculations Are Difficult”
6. Conclusions
- There is an initial value surface upon which the initial conditions of inverse differential operators can be defined.
- Modifications of gravity are expected on large distances, not small ones.
- Unlike models, theories involving can be chosen to exactly reproduce the CDM expansion history [129].
- Because is negative for cosmology and positive for gravitationally bound systems, it is trivial to choose the function to avoid solar system constraints.
- The scalar is dimensionless so it requires no small mass.
- During radiation domination , so the onset of modifications is postponed until late in cosmological history.
- Even after matter domination, the scalar only grows logarithmically with time, postponing the onset to even later times.
Funding
Acknowledgments
Conflicts of Interest
References
- Woodard, R.P. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 2007, 720, 403–433. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett. 2017, 119, 181301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Dong, B.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [PubMed]
- García-Bellido, J.; Clesse, S.; Fleury, P. Primordial black holes survive SN lensing constraints. Phys. Dark Univ. 2018, 20, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.; Silk, J. Baryon isocurvature fluctuations at small scales and baryonic dark matter. Phys. Rev. D 1993, 47, 4244–4255. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics: Implications for galaxies. Astrophys. J. 1983, 270, 371–389. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics: Implications for galaxy systems. Astrophys. J. 1983, 270, 384. [Google Scholar] [CrossRef]
- Sanders, R.H.; McGaugh, S.S. Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 2002, 40, 263–317. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Rel. 2012, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.H. From dark matter to MOND. arXiv, 2008; arXiv:0806.2585. [Google Scholar]
- McGaugh, S.S. The Baryonic Tully-Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. Astrophys. J. 2005, 632, 859–871. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Turner, M.S. How cold dark matter theory explains Milgrom’s law. Astrophys. J. 2002, 569, L19–L22. [Google Scholar] [CrossRef]
- Freeman, K.C. On the disks of spiral and SO Galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Sancisi, R. The Visible matter—Dark matter coupling. IAU Symp. 2004, 220, 233–240. [Google Scholar] [CrossRef]
- McGaugh, S.; Lelli, F.; Schombert, J. Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef] [PubMed]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Tsamis, N.C.; Woodard, R.P. Nonperturbative models for the quantum gravitational back reaction on inflation. Ann. Phys. 1998, 267, 145–192. [Google Scholar] [CrossRef]
- Saini, T.D.; Raychaudhury, S.; Sahni, V.; Starobinsky, A.A. Reconstructing the cosmic equation of state from supernova distances. Phys. Rev. Lett. 2000, 85, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 2002, 66, 021301. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav. 2006, 38, 1285–1304. [Google Scholar] [CrossRef]
- Guo, Z.K.; Ohta, N.; Zhang, Y.Z. Parametrizations of the dark energy density and scalar potentials. Mod. Phys. Lett. A 2007, 22, 883–890. [Google Scholar] [CrossRef]
- Ijjas, A.; Steinhardt, P.J.; Loeb, A. Inflationary paradigm in trouble after Planck2013. Phys. Lett. B 2013, 723, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H.; Kaiser, D.I.; Nomura, Y. Inflationary paradigm after Planck 2013. Phys. Lett. B 2014, 733, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Linde, A. Inflationary Cosmology after Planck. In Post-Planck Cosmology; Deffayet, C., Peter, P., Wandelt, B., Zaldarriaga, M., Cugliandolo, L.F., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Ijjas, A.; Steinhardt, P.J.; Loeb, A. Inflationary schism. Phys. Lett. B 2014, 736, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.P.; Woodard, R.P. Fine Tuning May Not Be Enough. J. Cosmol. Astropart. Phys. 2015, 1509, 022. [Google Scholar] [CrossRef]
- Liao, Z.H.; Miao, S.P.; Woodard, R.P. Cosmological Coleman-Weinberg Potentials and Inflation. arXiv, 2018; arXiv:1806.02533. [Google Scholar]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703–706. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Abdalla, F.B.; Alarcon, A.; Aleksić, J.; Allam, S.; Allen, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. arXiv, 2017; arXiv:1708.01530. [Google Scholar]
- Troxel, M.A.; MacCrann, N.; Zuntz, J.; Eifler, T.F.; Krause, E.; Dodelson, S.; Gruen, D.; Blazek, J.; Friedrich, O.; Samuroff, S.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear. arXiv, 2017; arXiv:1708.01538. [Google Scholar]
- Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Gomez, D.S. On the LCDM Universe in f(R) gravity. Phys. Rev. D 2010, 82, 023519. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Woodard, R.P. Nonlocal metric formulations of MOND with sufficient lensing. Phys. Rev. D 2011, 84, 124054. [Google Scholar] [CrossRef]
- Newton, I. Four Letters from Sir Isaac Newton to Doctor Bentley; Dodsley, J., Ed.; Pall-Mall: London, UK, 1756. [Google Scholar]
- Woodard, R.P. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 2015, 10, 32243. [Google Scholar] [CrossRef]
- Eliezer, D.A.; Woodard, R.P. The Problem of Nonlocality in String Theory. Nucl. Phys. B 1989, 325, 389–469. [Google Scholar] [CrossRef]
- Brooker, D.J.; Tsamis, N.C.; Woodard, R.P. Analytic approximation for the primordial spectra of single scalar potential models and its use in their reconstruction. Phys. Rev. D 2017, 96, 103531. [Google Scholar] [CrossRef] [Green Version]
- Brooker, D.J.; Tsamis, N.C.; Woodard, R.P. From Non-trivial Geometries to Power Spectra and Vice Versa. J. Cosmol. Astropart. Phys. 2018, 1804, 3. [Google Scholar] [CrossRef]
- Salopek, D.S.; Bond, J.R.; Bardeen, J.M. Designing Density Fluctuation Spectra in Inflation. Phys. Rev. D 1989, 40, 1753–1788. [Google Scholar] [CrossRef]
- Leonard, K.E.; Woodard, R.P. Graviton Corrections to Vacuum Polarization during Inflation. Class. Quant. Grav. 2014, 31, 015010. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. The Structure of perturbative quantum gravity on a De Sitter background. Commun. Math. Phys. 1994, 162, 217–248. [Google Scholar] [CrossRef]
- Woodard, R.P. De Sitter Breaking in Field Theory. In Deserfest: A Celebration of the Life and Works of Stanley Deser; Liu, J.T., Duff, M.J., Stelle, K.S., Woodard, R.P., Eds.; World Scientific: Hackensack, NJ, USA, 2006; pp. 339–351. [Google Scholar] [CrossRef]
- Wang, C.L.; Woodard, R.P. Excitation of Photons by Inflationary Gravitons. Phys. Rev. D 2015, 91, 124054. [Google Scholar] [CrossRef]
- Glavan, D.; Miao, S.P.; Prokopec, T.; Woodard, R.P. Electrodynamic Effects of Inflationary Gravitons. Class. Quant. Grav. 2014, 31, 175002. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. One loop graviton selfenergy in a locally de Sitter background. Phys. Rev. D 1996, 54, 2621–2639. [Google Scholar] [CrossRef]
- Mora, P.J.; Tsamis, N.C.; Woodard, R.P. Hartree approximation to the one loop quantum gravitationalcorrection to the graviton mode function on de Sitter. J. Cosmol. Astropart. Phys. 2013, 1310, 018. [Google Scholar] [CrossRef]
- Park, S.; Woodard, R.P. Scalar Contribution to the Graviton Self-Energy during Inflation. Phys. Rev. D 2011, 83, 084049. [Google Scholar] [CrossRef]
- Park, S.; Woodard, R.P. Inflationary Scalars Don’t Affect Gravitons at One Loop. Phys. Rev. D 2011, 84, 124058. [Google Scholar] [CrossRef]
- Park, S.; Prokopec, T.; Woodard, R.P. Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background. J. High Energy Phys. 2016, 1601, 074. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Quantum gravity slows inflation. Nucl. Phys. B 1996, 474, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Tsamis, N.C.; Woodard, R.P. A Gravitational Mechanism for Cosmological Screening. Int. J. Mod. Phys. D 2011, 20, 2847–2851. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.P.; Woodard, R.P. The Fermion self-energy during inflation. Class. Quant. Grav. 2006, 23, 1721–1761. [Google Scholar] [CrossRef]
- Miao, S.P.; Woodard, R.P. Gravitons Enhance Fermions during Inflation. Phys. Rev. D 2006, 74, 024021. [Google Scholar] [CrossRef]
- Prokopec, T.; Tornkvist, O.; Woodard, R.P. One loop vacuum polarization in a locally de Sitter background. Ann. Phys. 2003, 303, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Prokopec, T.; Tsamis, N.C.; Woodard, R.P. Two Loop Scalar Bilinears for Inflationary SQED. Class. Quant. Grav. 2007, 24, 201–230. [Google Scholar] [CrossRef]
- Prokopec, T.; Tsamis, N.C.; Woodard, R.P. Two loop stress-energy tensor for inflationary scalar electrodynamics. Phys. Rev. D 2008, 78, 043523. [Google Scholar] [CrossRef]
- Radkowski, A.F. Some Aspects of the Source Description of Gravitation. Ann. Phys. 1970, 56, 319. [Google Scholar] [CrossRef]
- Detweiler, S.L. Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 1979, 234, 1100–1104. [Google Scholar] [CrossRef]
- Miao, S.P.; Prokopec, T.; Woodard, R.P. Deducing Cosmological Observables from the S-matrix. Phys. Rev. D 2017, 96, 104029. [Google Scholar] [CrossRef]
- Miao, S.P.; Park, S. Alternate Definitions of Loop Corrections to the Primordial Power Spectra. Phys. Rev. D 2014, 89, 064053. [Google Scholar] [CrossRef]
- Fröb, M.B. Gauge-invariant quantum gravitational corrections to correlation functions. Class. Quant. Grav. 2018, 35, 055006. [Google Scholar] [CrossRef] [Green Version]
- Fröb, M.B.; Lima, W.C.C. Propagators for gauge-invariant observables in cosmology. Class. Quant. Grav. 2018, 35, 095010. [Google Scholar] [CrossRef] [Green Version]
- Fröb, M.B.; Hack, T.P.; Khavkine, I. Approaches to linear local gauge-invariant observables in inflationary cosmologies. Class. Quant. Grav. 2018, 35, 115002. [Google Scholar] [CrossRef] [Green Version]
- Tsamis, N.C.; Woodard, R.P. Pure Gravitational Back-Reaction Observables. Phys. Rev. D 2013, 88, 044040. [Google Scholar] [CrossRef]
- Miao, S.P.; Tsamis, N.C.; Woodard, R.P. Invariant measure of the one-loop quantum gravitational backreaction on inflation. Phys. Rev. D 2017, 95, 125008. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, D. Nonlinear nature of gravitation and gravitational wave experiments. Phys. Rev. Lett. 1991, 67, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, W.; Siday, R.E. The Refractive Index in Electron Optics and the Principles of Dynamics. Proc. Phys. Soc. 1949, B62, 8–21. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Chambers, R.G. Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Phys. Rev. Lett. 1960, 5, 3–5. [Google Scholar] [CrossRef]
- Giddings, S.B.; Sloth, M.S. Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies. Phys. Rev. D 2011, 84, 063528. [Google Scholar] [CrossRef]
- Basu, S.; Woodard, R.P. Testing an Ansatz for the Leading Secular Loop Corrections from Quantum Gravity during Inflation. Class. Quant. Grav. 2016, 33, 205007. [Google Scholar] [CrossRef]
- Basu, S.; Tsamis, N.C.; Woodard, R.P. Causality Implies Inflationary Back-Reaction. J. High Energy Phys. 2017, 1707, 037. [Google Scholar] [CrossRef]
- Abramo, L.R.W.; Woodard, R.P. One loop back reaction on chaotic inflation. Phys. Rev. D 1999, 60, 044010. [Google Scholar] [CrossRef]
- Abramo, L.R.; Woodard, R.P. No one loop back reaction in chaotic inflation. Phys. Rev. D 2002, 65, 063515. [Google Scholar] [CrossRef]
- Parker, L.; Toms, D.J. Renormalization Group and Nonlocal Terms in the Curved Space-time Effective Action: Weak Field Results. Phys. Rev. D 1985, 32, 1409–1420. [Google Scholar] [CrossRef]
- Banks, T. Prolegomena to a Theory of Bifurcating Universes: A Nonlocal Solution to the Cosmological Constant Problem Or Little Lambda Goes Back to the Future. Nucl. Phys. B 1988, 309, 493–512. [Google Scholar] [CrossRef]
- Wetterich, C. Effective nonlocal Euclidean gravity. Gen. Rel. Grav. 1998, 30, 159–172. [Google Scholar] [CrossRef]
- Barvinsky, A.O. Nonlocal action for long distance modifications of gravity theory. Phys. Lett. B 2003, 572, 109–116. [Google Scholar] [CrossRef]
- Espriu, D.; Multamaki, T.; Vagenas, E.C. Cosmological significance of one-loop effective gravity. Phys. Lett. B 2005, 628, 197–205. [Google Scholar] [CrossRef]
- Hamber, H.W.; Williams, R.M. Nonlocal effective gravitational field equations and the running of Newton’s G. Phys. Rev. D 2005, 72, 044026. [Google Scholar] [CrossRef]
- Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 2006, 3, 9. [Google Scholar] [CrossRef]
- Nacir, D.L.; Mazzitelli, F.D. Running of Newton’s constant and non integer powers of the d’Alembertian. Phys. Rev. D 2007, 75, 024003. [Google Scholar] [CrossRef]
- Khoury, J. Fading gravity and self-inflation. Phys. Rev. D 2007, 76, 123513. [Google Scholar] [CrossRef]
- Capozziello, S.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Accelerating cosmologies from non-local higher-derivative gravity. Phys. Lett. B 2009, 671, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity. J. Cosmol. Astropart. Phys. 2010, 1011, 8. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Sasaki, M. Screening of cosmological constant in non-local cosmology. Int. J. Mod. Phys. D 2012, 21, 1250006. [Google Scholar] [CrossRef]
- Barvinsky, A.O. Dark energy and dark matter from nonlocal ghost-free gravity theory. Phys. Lett. B 2012, 710, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O. Serendipitous discoveries in nonlocal gravity theory. Phys. Rev. D 2012, 85, 104018. [Google Scholar] [CrossRef]
- Elizalde, E.; Pozdeeva, E.O.; Vernov, S.Y. De Sitter Universe in Non-local Gravity. Phys. Rev. D 2012, 85, 044002. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Gusev, Y.V. New representation of the nonlocal ghost-free gravity theory. Phys. Part. Nucl. 2013, 44, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Conroy, A.; Koshelev, A.S.; Mazumdar, A. Generalized ghost-free quadratic curvature gravity. Class. Quant. Grav. 2014, 31, 015022, Erratum in 2014, 31, 159501. [Google Scholar] [CrossRef]
- Foffa, S.; Maggiore, M.; Mitsou, E. Apparent ghosts and spurious degrees of freedom in non-local theories. Phys. Lett. B 2014, 733, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Foffa, S.; Maggiore, M.; Mitsou, E. Cosmological dynamics and dark energy from nonlocal infrared modifications of gravity. Int. J. Mod. Phys. A 2014, 29, 1450116. [Google Scholar] [CrossRef] [Green Version]
- Rahvar, S.; Mashhoon, B. Observational Tests of Nonlocal Gravity: Galaxy Rotation Curves and Clusters of Galaxies. Phys. Rev. D 2014, 89, 104011. [Google Scholar] [CrossRef]
- Kehagias, A.; Maggiore, M. Spherically symmetric static solutions in a nonlocal infrared modification of General Relativity. J. High Energy Phys. 2014, 1408, 029. [Google Scholar] [CrossRef]
- Maggiore, M.; Mancarella, M. Nonlocal gravity and dark energy. Phys. Rev. D 2014, 90, 023005. [Google Scholar] [CrossRef]
- Dirian, Y.; Foffa, S.; Khosravi, N.; Kunz, M.; Maggiore, M. Cosmological perturbations and structure formation in nonlocal infrared modifications of general relativity. J. Cosmol. Astropart. Phys. 2014, 1406, 033. [Google Scholar] [CrossRef]
- Conroy, A.; Koivisto, T.; Mazumdar, A.; Teimouri, A. Generalized quadratic curvature, non-local infrared modifications of gravity and Newtonian potentials. Class. Quant. Grav. 2015, 32, 015024. [Google Scholar] [CrossRef]
- Barreira, A.; Li, B.; Hellwing, W.A.; Baugh, C.M.; Pascoli, S. Nonlinear structure formation in Nonlocal Gravity. J. Cosmol. Astropart. Phys. 2014, 1409, 031. [Google Scholar] [CrossRef]
- Dirian, Y.; Mitsou, E. Stability analysis and future singularity of the m2R□−2R model of non-local gravity. J. Cosmol. Astropart. Phys. 2014, 1410, 065. [Google Scholar] [CrossRef]
- Dirian, Y.; Foffa, S.; Kunz, M.; Maggiore, M.; Pettorino, V. Non-local gravity and comparison with observational datasets. J. Cosmol. Astropart. Phys. 2015, 1504, 044. [Google Scholar] [CrossRef]
- Netto, T.D.P.; Pelinson, A.M.; Shapiro, I.L.; Starobinsky, A.A. From stable to unstable anomaly-induced inflation. Eur. Phys. J. C 2016, 76, 544. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.B.; Li, S.; Liu, Y.C.; Chen, B.H.; Chai, Y.T.; Shu, S. Cosmological evolution of generalized non-local gravity. J. Cosmol. Astropart. Phys. 2016, 1607, 3. [Google Scholar] [CrossRef]
- Cusin, G.; Foffa, S.; Maggiore, M.; Mancarella, M. Nonlocal gravity with a Weyl-square term. Phys. Rev. D 2016, 93, 043006. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Koyama, K.; Sasaki, M.; Zhao, G.B. Acausality in Nonlocal Gravity Theory. J. High Energy Phys. 2016, 1603, 039. [Google Scholar] [CrossRef]
- Cusin, G.; Foffa, S.; Maggiore, M.; Mancarella, M. Conformal symmetry and nonlinear extensions of nonlocal gravity. Phys. Rev. D 2016, 93, 083008. [Google Scholar] [CrossRef]
- Dirian, Y.; Foffa, S.; Kunz, M.; Maggiore, M.; Pettorino, V. Non-local gravity and comparison with observational datasets. II. Updated results and Bayesian model comparison with ΛCDM. J. Cosmol. Astropart. Phys. 2016, 1605, 068. [Google Scholar] [CrossRef]
- Maggiore, M. Perturbative loop corrections and nonlocal gravity. Phys. Rev. D 2016, 93, 063008. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity. J. High Energy Phys. 2016, 1611, 067. [Google Scholar] [CrossRef]
- Nersisyan, H.; Akrami, Y.; Amendola, L.; Koivisto, T.S.; Rubio, J. Dynamical analysis of RR cosmology: Impact of initial conditions and constraints from supernovae. Phys. Rev. D 2016, 94, 043531. [Google Scholar] [CrossRef]
- Maggiore, M. Nonlocal Infrared Modifications of Gravity. A Review. Fundam. Theor. Phys. 2017, 187, 221–281. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zhang, X.; Wu, M.M.; Zhang, N.; Chen, B.H. Energy conditions and constraints on the generalized non-local gravity model. Chin. Phys. Lett. 2017, 34, 079801. [Google Scholar] [CrossRef]
- Mashhoon, B. Nonlocal Gravity; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Romania, M.G.; Tsamis, N.C.; Woodard, R.P. Quantum Gravity and Inflation. Lect. Notes Phys. 2013, 863, 375–395. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. A Phenomenological Model for the Early Universe. Phys. Rev. D 2009, 80, 083512. [Google Scholar] [CrossRef]
- Soussa, M.E.; Woodard, R.P. A Nonlocal metric formulation of MOND. Class. Quant. Grav. 2003, 20, 2737–2751. [Google Scholar] [CrossRef]
- Deser, S.; Woodard, R.P. Nonlocal Cosmology. Phys. Rev. Lett. 2007, 99, 111301. [Google Scholar] [CrossRef] [PubMed]
- Deser, S.; Woodard, R.P. Observational Viability and Stability of Nonlocal Cosmology. J. Cosmol. Astropart. Phys. 2013, 1311, 036. [Google Scholar] [CrossRef]
- Woodard, R.P. Nonlocal Models of Cosmic Acceleration. Found. Phys. 2014, 44, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Soussa, M.E.; Woodard, R.P. A Generic problem with purely metric formulations of MOND. Phys. Lett. B 2004, 578, 253–258. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Primordial Density Perturbations and Reheating from Gravity. Phys. Rev. D 2010, 82, 063502. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Post-Inflationary Evolution via Gravitation. Phys. Rev. D 2010, 81, 103509. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. A Caveat on Building Nonlocal Models of Cosmology. J. Cosmol. Astropart. Phys. 2014, 1409, 8. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Improved cosmological model. Phys. Rev. D 2016, 94, 043508. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C.; Woodard, R.P. Reconstructing the Distortion Function for Nonlocal Cosmology. J. Cosmol. Astropart. Phys. 2009, 8, 023. [Google Scholar] [CrossRef]
- Park, S.; Dodelson, S. Structure formation in a nonlocally modified gravity model. Phys. Rev. D 2013, 87, 024003. [Google Scholar] [CrossRef] [Green Version]
- Dodelson, S.; Park, S. Nonlocal Gravity and Structure in the Universe. Phys. Rev. D 2014, 90, 043535. [Google Scholar] [CrossRef]
- Park, S.; Shafieloo, A. Growth of perturbations in nonlocal gravity with non-ΛCDM background. Phys. Rev. D 2017, 95, 064061. [Google Scholar] [CrossRef]
- Nersisyan, H.; Cid, A.F.; Amendola, L. Structure formation in the Deser-Woodard nonlocal gravity model: A reappraisal. J. Cosmol. Astropart. Phys. 2017, 1704, 046. [Google Scholar] [CrossRef]
- Park, S. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation. Phys. Rev. D 2018, 97, 044006. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C.; Esposito-Farese, G.; Woodard, R.P. Field equations and cosmology for a class of nonlocal metric models of MOND. Phys. Rev. D 2014, 90, 064038, Addendum: 2014, 90, 089901. [Google Scholar] [CrossRef]
- Woodard, R.P. Nonlocal metric realizations of MOND. Can. J. Phys. 2015, 93, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Rahat, M.H.; Sayeb, M.; Tan, L.; Woodard, R.P.; Xu, B. Determining Cosmology for a Nonlocal Realization of MOND. Phys. Rev. D 2016, 94, 104009. [Google Scholar] [CrossRef]
- Tan, L.; Woodard, R.P. Structure Formation in Nonlocal MOND. J. Cosmol. Astropart. Phys. 2018, 1805, 037. [Google Scholar] [CrossRef]
i | 1 | a | Description | ||
---|---|---|---|---|---|
0 | scalar exchange | ||||
1 | 0 | 0 | 0 | vertex-vertex | |
2 | 0 | 0 | 0 | 0 | vertex-source, observer |
3 | 0 | 0 | vertex-scalar | ||
4 | 0 | source-observer | |||
5 | scalar-source, observer | ||||
Total | 0 | 0 | 0 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodard, R.P. The Case for Nonlocal Modifications of Gravity. Universe 2018, 4, 88. https://doi.org/10.3390/universe4080088
Woodard RP. The Case for Nonlocal Modifications of Gravity. Universe. 2018; 4(8):88. https://doi.org/10.3390/universe4080088
Chicago/Turabian StyleWoodard, Richard P. 2018. "The Case for Nonlocal Modifications of Gravity" Universe 4, no. 8: 88. https://doi.org/10.3390/universe4080088
APA StyleWoodard, R. P. (2018). The Case for Nonlocal Modifications of Gravity. Universe, 4(8), 88. https://doi.org/10.3390/universe4080088