Questions Related to the Equation of State of High-Density Matter
Abstract
:1. Introduction
2. Astronomical Measurements and Caveats
2.1. Mass Measurements
2.2. Tidal Deformability Measurements
- Because tidal effects are strongly dependent on the separation between the stars, waveform differences increase strongly with increasing orbital frequency. This is precisely where waveform models, and specifically those that include tidal deformability as a parameter, are least certain. As a result, there is a systematic error inherent in uncertainties regarding the correct waveform model. The analysis papers therefore display tidal deformability posteriors from multiple different waveform families, which differ by ∼10% at a few hundred Hertz [33].
- The inferred constraints on tidal deformability also depend on assumptions regarding the dimensionless spin parameter (where J is the angular momentum of a neutron star). A “high-spin” analysis assumes that the prior probability for is uniform between 0 and 0.89, which is the highest possible for a maximally-spinning star with a plausible equation of state [33]. A “low-spin” analysis assumes that , which is consistent with observed pulsars in double neutron star binaries [33]. Fortunately, the tidal deformability does not depend strongly on the spin parameter prior (see [33] and the discussion below).
- The large number of gravitational wave cycles in GW170817 means that there is an extremely precise measurement of the “chirp mass”, which is , where and . For GW170817, at 90% credibility [33]. However, the mass ratio is not well constrained; at 90% credibility, using a low-spin prior, –1.0 [33]. This means that the primary mass could range from to , and the secondary mass could range from to [33]. These ranges are wide enough that their values depend on the prior probability distribution assumed for the masses of neutron stars. For example, should one assume that the mass has equal prior probability from some minimum mass (say, ) to the maximum allowed mass? Or should one place a mass prior based on the observed (and highly incomplete!) set of measured neutron star masses, or based on a different criterion?
2.3. Future Radius Measurements
2.4. Future Moment of Inertia Measurements
2.5. Future Constraints Based on Gravitational Binding Energy
3. Questions for Nuclear Physicists
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Lattimer, J.M.; Prakash, M. Neutron star observations: Prognosis for equation of state constraints. Phy. Rep. 2007, 442, 109–165. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. What a Two Solar Mass Neutron Star Really Means. arXiv 2010, arXiv:1012.3208. [Google Scholar]
- Miller, M.C. Astrophysical Constraints on Dense Matter in Neutron Stars. arXiv 2013, arXiv:1312.0029. [Google Scholar]
- Miller, M.C.; Lamb, F.K. Observational constraints on neutron star masses and radii. Eur. Phys. J. A 2016, 52, 63. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. The equation of state of hot, dense matter and neutron stars. Phy. Rep. 2016, 621, 127–164. [Google Scholar] [CrossRef]
- Degenaar, N.; Suleimanov, V.F. Testing the equation of state of neutron stars with electromagnetic observations. arXiv 2018, arXiv:1806.02833. [Google Scholar]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron Stars—Cooling and Transport. Space Sci. Rev. 2015, 191, 239–291. [Google Scholar] [CrossRef]
- Wijnands, R.; Degenaar, N.; Page, D. Cooling of Accretion-Heated Neutron Stars. J. Astrophys. Astron. 2017, 38, 49. [Google Scholar] [CrossRef]
- Miller, M.C.; Chirenti, C.; Lamb, F.K. Constraining the equation of state of high-density cold matter using nuclear and astronomical measurements. arXiv 2019, arXiv:1904.08907. [Google Scholar]
- Freire, P.C.C. Eccentric Binary Millisecond Pulsars. arXiv 2009, arXiv:0907.3219. [Google Scholar]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. A very massive neutron star: Relativistic Shapiro delay measurements of PSR J0740+6620. arXiv 2019, arXiv:1904.06759. [Google Scholar]
- Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A two-solar-mass neutron star measured using Shapiro delay. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S.; Chatterjee, S.; Christy, B.; Cordes, J.M.; Cornish, N.J.; Crawford, F.; Thankful Cromartie, H.; et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophys. J. Suppl. 2018, 235, 37. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 448. [Google Scholar] [CrossRef] [PubMed]
- van Kerkwijk, M.H.; Breton, R.P.; Kulkarni, S.R. Evidence for a Massive Neutron Star from a Radial-velocity Study of the Companion to the Black-widow Pulsar PSR B1957+20. Astrophys. J. 2011, 728, 95. [Google Scholar] [CrossRef]
- Romani, R.W.; Filippenko, A.V.; Silverman, J.M.; Cenko, S.B.; Greiner, J.; Rau, A.; Elliott, J.; Pletsch, H.J. PSR J1311-3430: A Heavyweight Neutron Star with a Flyweight Helium Companion. Astrophys. J. Lett. 2012, 760, L36. [Google Scholar] [CrossRef]
- Romani, R.W.; Filippenko, A.V.; Cenko, S.B. A Spectroscopic Study of the Extreme Black Widow PSR J1311-3430. Astrophys. J. 2015, 804, 115. [Google Scholar] [CrossRef]
- Bauswein, A.; Baumgarte, T.W.; Janka, H.T. Prompt Merger Collapse and the Maximum Mass of Neutron Stars. Phys. Rev. Lett. 2013, 111, 131101. [Google Scholar] [CrossRef]
- Fryer, C.L.; Belczynski, K.; Ramirez-Ruiz, E.; Rosswog, S.; Shen, G.; Steiner, A.W. The Fate of the Compact Remnant in Neutron Star Mergers. Astrophys. J. 2015, 812, 24. [Google Scholar] [CrossRef]
- Lawrence, S.; Tervala, J.G.; Bedaque, P.F.; Miller, M.C. An Upper Bound on Neutron Star Masses from Models of Short Gamma-Ray Bursts. Astrophys. J. 2015, 808, 186. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D. Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817. Astrophys. J. Lett. 2017, 850, L19. [Google Scholar] [CrossRef]
- Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M. Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 2017, 96, 123012. [Google Scholar] [CrossRef]
- Rezzolla, L.; Most, E.R.; Weih, L.R. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. Astrophys. J. Lett. 2018, 852, L25. [Google Scholar] [CrossRef]
- Ruiz, M.; Shapiro, S.L.; Tsokaros, A. GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 2018, 97, 021501. [Google Scholar] [CrossRef] [PubMed]
- Bedaque, P.; Steiner, A.W. Sound Velocity Bound and Neutron Stars. Phys. Rev. Lett. 2015, 114, 031103. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, C.C.; Gaitanos, T.; Margaritis, C.; Lalazissis, G.A. Bounds on the speed of sound in dense matter, and neutron star structure. Phys. Rev. C 2017, 95, 045801. [Google Scholar] [CrossRef]
- Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations. Astrophys. J. 2018, 860, 149. [Google Scholar] [CrossRef]
- Alsing, J.; Silva, H.O.; Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc. 2018, 478, 1377–1391. [Google Scholar] [CrossRef]
- Rhoades, C.E.; Ruffini, R. Maximum Mass of a Neutron Star. Phys. Rev. Lett. 1974, 32, 324–327. [Google Scholar] [CrossRef]
- Kalogera, V.; Baym, G. The Maximum Mass of a Neutron Star. Astrophys. J. Lett. 1996, 470, L61. [Google Scholar] [CrossRef]
- Hinderer, T. Tidal Love Numbers of Neutron Stars. Astrophys. J. 2008, 677, 1216–1220. [Google Scholar] [CrossRef]
- Wade, L.; Creighton, J.D.E.; Ochsner, E.; Lackey, B.D.; Farr, B.F.; Littenberg, T.B.; Raymond, V. Systematic and statistical errors in a Bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors. Phys. Rev. D 2014, 89, 103012. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar] [CrossRef]
- Schaffner-Bielich, J.; Hanauske, M.; Stöcker, H.; Greiner, W. Phase Transition to Hyperon Matter in Neutron Stars. Phys. Rev. Lett. 2002, 89, 171101. [Google Scholar] [CrossRef]
- Kaltenborn, M.A.R.; Bastian, N.U.F.; Blaschke, D.B. Quark-nuclear hybrid star equation of state with excluded volume effects. Phys. Rev. D 2017, 96, 056024. [Google Scholar] [CrossRef]
- Drago, A.; Pagliara, G.; Popov, S.; Traversi, S.; Wiktorowicz, G. The Merger of Two Compact Stars: A Tool for Dense Matter Nuclear Physics. Universe 2018, 4, 50. [Google Scholar] [CrossRef]
- Fischer, T.; Bastian, N.U.F.; Wu, M.R.; Baklanov, P.; Sorokina, E.; Blinnikov, S.; Typel, S.; Klähn, T.; Blaschke, D.B. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nat. Astron. 2018, 2, 980–986. [Google Scholar] [CrossRef]
- Bauswein, A.; Bastian, N.U.F.; Blaschke, D.B.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Oertel, M. Identifying a First-Order Phase Transition in Neutron-Star Mergers through Gravitational Waves. Phys. Rev. Lett. 2019, 122, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef]
- Blaschke, D.; Chamel, N. Phases of Dense Matter in Compact Stars. Astrophysics and Space Science Library. In The Physics and Astrophysics of Neutron Stars, Astrophysics and Space Science Library; Rezzolla, L., Pizzochero, P., Jones, D.I., Rea, N., Vidaña, I., Eds.; Springer: Basel, Switzerland, 2018; Volume 457, p. 337. [Google Scholar]
- Paschalidis, V.; Yagi, K.; Alvarez-Castillo, D.; Blaschke, D.B.; Sedrakian, A. Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars. Phys. Rev. D 2018, 97, 084038. [Google Scholar] [CrossRef]
- The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. arXiv 2018, arXiv:1811.12907. [Google Scholar]
- Del Pozzo, W.; Li, T.G.F.; Agathos, M.; Van Den Broeck, C.; Vitale, S. Demonstrating the Feasibility of Probing the Neutron-Star Equation of State with Second-Generation Gravitational-Wave Detectors. Phys. Rev. Lett. 2013, 111, 071101. [Google Scholar] [CrossRef]
- Lackey, B.D.; Wade, L. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars. Phys. Rev. D 2015, 91, 043002. [Google Scholar] [CrossRef]
- Heinke, C.O.; Rybicki, G.B.; Narayan, R.; Grindlay, J.E. A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae. Astrophys. J. 2006, 644, 1090–1103. [Google Scholar] [CrossRef]
- Suleimanov, V.; Poutanen, J.; Werner, K. X-ray bursting neutron star atmosphere models using an exact relativistic kinetic equation for Compton scattering. Astron. Astrophys. 2012, 545, A120. [Google Scholar] [CrossRef]
- Haakonsen, C.B.; Turner, M.L.; Tacik, N.A.; Rutledge, R.E. The McGill Planar Hydrogen Atmosphere Code (McPHAC). Astrophys. J. 2012, 749, 52. [Google Scholar] [CrossRef]
- Lewin, W.H.G.; van Paradijs, J.; Taam, R.E. X-ray Bursts. Space Sci. Rev. 1993, 62, 223–389. [Google Scholar] [CrossRef]
- Rutledge, R.E.; Bildsten, L.; Brown, E.F.; Pavlov, G.G.; Zavlin, V.E. The Quiescent X-ray Spectrum of the Neutron Star in Centaurus X-4 Observed with Chandra/ACIS-S. Astrophys. J. 2001, 551, 921–928. [Google Scholar] [CrossRef]
- Grindlay, J.E.; Heinke, C.O.; Edmonds, P.D.; Murray, S.S.; Cool, A.M. Chandra Exposes the Core-collapsed Globular Cluster NGC 6397. Astrophys. J. Lett. 2001, 563, L53. [Google Scholar] [CrossRef]
- Steiner, A.W.; Heinke, C.O.; Bogdanov, S.; Li, C.K.; Ho, W.C.G.; Bahramian, A.; Han, S. Constraining the mass and radius of neutron stars in globular clusters. Mon. Not. R. Astron. Soc. 2018, 476, 421–435. [Google Scholar] [CrossRef]
- Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The Equation of State from Observed Masses and Radii of Neutron Stars. Astrophys. J. 2010, 722, 33–54. [Google Scholar] [CrossRef]
- Kajava, J.J.E.; Nättilä, J.; Latvala, O.M.; Pursiainen, M.; Poutanen, J.; Suleimanov, V.F.; Revnivtsev, M.G.; Kuulkers, E.; Galloway, D.K. The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts. Mon. Not. R. Astron. Soc. 2014, 445, 4218–4234. [Google Scholar] [CrossRef]
- Gendreau, K.C.; Arzoumanian, Z.; Adkins, P.W.; Albert, C.L.; Anders, J.F.; Aylward, A.T.; Baker, C.L.; Balsamo, E.R.; Bamford, W.A.; Benegalrao, S.S.; et al. The Neutron star Interior Composition Explorer (NICER): Design and development. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 22 July 2016; p. 99051H. [Google Scholar] [CrossRef]
- Lo, K.H.; Miller, M.C.; Bhattacharyya, S.; Lamb, F.K. Determining Neutron Star Masses and Radii Using Energy-resolved Waveforms of X-ray Burst Oscillations. Astrophys. J. 2013, 776, 19. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K. Determining Neutron Star Properties by Fitting Oblate-star Waveform Models to X-ray Burst Oscillations. Astrophys. J. 2015, 808, 31. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef]
- Raithel, C.A.; Özel, F.; Psaltis, D. Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius. Astrophys. J. Lett. 2018, 857, L23. [Google Scholar] [CrossRef]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102. [Google Scholar] [CrossRef]
- Bauswein, A.; Just, O.; Janka, H.T.; Stergioulas, N. Neutron-star Radius Constraints from GW170817 and Future Detections. Astrophys. J. Lett. 2017, 850, L34. [Google Scholar] [CrossRef]
- Radice, D.; Perego, A.; Zappa, F.; Bernuzzi, S. GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. Astrophys. J. Lett. 2018, 852, L29. [Google Scholar] [CrossRef]
- Radice, D.; Dai, L. Multimessenger Parameter Estimation of GW170817. arXiv 2018, arXiv:1810.12917. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Shao, D.S.; Jiang, J.L.; Tang, S.P.; Ren, X.X.; Zhang, F.W.; Jin, Z.P.; Fan, Y.Z.; Wei, D.M. GW170817: The energy extraction process of the off-axis relativistic outflow and the constraint on the equation of state of neutron stars. arXiv 2018, arXiv:1811.02558. [Google Scholar]
- Coughlin, M.W.; Dietrich, T.; Margalit, B.; Metzger, B.D. Multi-messenger Bayesian parameter inference of a binary neutron-star merger. arXiv 2018, arXiv:1812.04803. [Google Scholar]
- Kiuchi, K.; Kyutoku, K.; Shibata, M.; Taniguchi, K. Revisiting the lower bound on tidal deformability derived by AT 2017gfo. arXiv 2019, arXiv:1903.01466. [Google Scholar]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Schutz, B.F. Constraining the Equation of State with Moment of Inertia Measurements. Astrophys. J. 2005, 629, 979–984. [Google Scholar] [CrossRef]
- Kramer, M.; Wex, N. Topical Review: The double pulsar system: A unique laboratory for gravity. Class. Quantum Gravity 2009, 26, 073001. [Google Scholar] [CrossRef]
- Nomoto, K. Evolution of 8-10 solar mass stars toward electron capture supernovae. I—Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 1984, 277, 791–805. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Langer, N.; Poelarends, A.J.T.; Rappaport, S.; Heger, A.; Pfahl, E. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks. Astrophys. J. 2004, 612, 1044–1051. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Dewi, J.D.M.; Lesaffre, P.; Miller, J.C.; Newton, W.G.; Stone, J.R. The double pulsar J0737-3039: Testing the neutron star equation of state. Mon. Not. R. Astron. Soc. 2005, 361, 1243–1249. [Google Scholar] [CrossRef]
- Martinez, J.G.; Stovall, K.; Freire, P.C.C.; Deneva, J.S.; Jenet, F.A.; McLaughlin, M.A.; Bagchi, M.; Bates, S.D.; Ridolfi, A. Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry. Astrophys. J. 2015, 812, 143. [Google Scholar] [CrossRef]
- Tauris, T.M.; Kramer, M.; Freire, P.C.C.; Wex, N.; Janka, H.T.; Langer, N.; Podsiadlowski, P.; Bozzo, E.; Chaty, S.; Kruckow, M.U.; et al. Formation of Double Neutron Star Systems. Astrophys. J. 2017, 846, 170. [Google Scholar] [CrossRef]
- Fattoyev, F.J.; Piekarewicz, J.; Horowitz, C.J. Neutron Skins and Neutron Stars in the Multimessenger Era. Phys. Rev. Lett. 2018, 120, 172702. [Google Scholar] [CrossRef]
- Read, J.S.; Lackey, B.D.; Owen, B.J.; Friedman, J.L. Constraints on a phenomenologically parametrized neutron-star equation of state. Phys. Rev. D 2009, 79, 124032. [Google Scholar] [CrossRef]
- Raithel, C.A.; Özel, F.; Psaltis, D. From Neutron Star Observables to the Equation of State. I. An Optimal Parametrization. Astrophys. J. 2016, 831, 44. [Google Scholar] [CrossRef]
- Lindblom, L. Spectral representations of neutron-star equations of state. Phys. Rev. D 2010, 82, 103011. [Google Scholar] [CrossRef]
- Gandolfi, S.; Carlson, J.; Reddy, S.; Steiner, A.W.; Wiringa, R.B. The equation of state of neutron matter, symmetry energy and neutron star structure. Eur. Phys. J. A 2014, 50, 10. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, M.C. Questions Related to the Equation of State of High-Density Matter. Universe 2019, 5, 100. https://doi.org/10.3390/universe5050100
Miller MC. Questions Related to the Equation of State of High-Density Matter. Universe. 2019; 5(5):100. https://doi.org/10.3390/universe5050100
Chicago/Turabian StyleMiller, M. Coleman. 2019. "Questions Related to the Equation of State of High-Density Matter" Universe 5, no. 5: 100. https://doi.org/10.3390/universe5050100
APA StyleMiller, M. C. (2019). Questions Related to the Equation of State of High-Density Matter. Universe, 5(5), 100. https://doi.org/10.3390/universe5050100