Flat Connection for Rotating Vacuum Spacetimes in Extended Teleparallel Gravity Theories †
Abstract
:1. Introduction
2. Covariant Formulation of Gravity
3. Field Equations
4. Rotating Spacetime in Weyl Canonical Coordinates
5. Rotating Spacetime in Boyer–Lindquist Coordinates
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GR | General relativity |
STEGR | Symmetric teleparallel equivalent of general relativity |
TEGR | Teleparallel equivalent of general relativity |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K. First, M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar] [CrossRef]
- Barack, L.; Cardoso, V.; Nissanke, S.; Sotiriou, T.P.; Askar, A.; Belczynski, C.; Bertone, G.; Bon, E.; Blas, D.; Brito, R.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. arXiv 2018, arXiv:gr-qc/1806.05195. [Google Scholar]
- Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. arXiv 2019, arXiv:gr-qc/1904.05363. [Google Scholar]
- Bambi, C.; Freese, K.; Vagnozzi, S.; Visinelli, L. Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. arXiv 2019, arXiv:gr-qc/1904.12983. [Google Scholar]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Di Filippo, F.; Liberati, S.; Visser, M. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. 2018, D98, 124009. [Google Scholar] [CrossRef]
- Berti, E.; Yagi, K.; Yang, H.; Yunes, N. Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown. Gen. Rel. Grav. 2018, 50, 49. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation; World Scientific: Singapore, 2013. [Google Scholar]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. 2018, D98, 044048. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. 2018, D97, 124025. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. arXiv 2019, arXiv:hep-th/1903.06830. [Google Scholar]
- Maluf, J.W.; da Rocha-Neto, J.F.; Toribio, T.M.L.; Castello-Branco, K.H. Energy and angular momentum of the gravitational field in the teleparallel geometry. Phys. Rev. 2002, D65, 124001. [Google Scholar] [CrossRef]
- Lucas, T.G.; Obukhov, Y.N.; Pereira, J.G. Regularizing role of teleparallelism. Phys. Rev. 2009, D80, 064043. [Google Scholar] [CrossRef]
- Maluf, J.W.; Ulhoa, S.C.; da Rocha-Neto, J.F. Gravitational pressure on event horizons and thermodynamics in the teleparallel framework. Phys. Rev. 2012, D85, 044050. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. 2009, D79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. 2010, D81, 127301. [Google Scholar] [CrossRef]
- Geng, C.Q.; Lee, C.C.; Saridakis, E.N.; Wu, Y.P. “Teleparallel” dark energy. Phys. Lett. 2011, B704, 384–387. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of scalar-torsion gravity. Phys. Rev. 2018, D97, 104011. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of nonlinear, electrodynamics. Phys. Rev. 2018, D97, 104042. [Google Scholar] [CrossRef]
- Hohmann, M. Scalar-torsion theories of gravity I: general formalism and conformal transformations. Phys. Rev. 2018, D98, 064002. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C. Scalar-torsion theories of gravity II: L(T, X, Y, ϕ) theory. arXiv 2018, arXiv:gr-qc/1801.06536. [Google Scholar]
- Bahamonde, S.; Böhmer, C.G.; Krššák, M. New classes of modified teleparallel gravity models. Phys. Lett. 2017, B775, 37–43. [Google Scholar] [CrossRef]
- Bahamonde, S.; Marciu, M.; Said, J.L. Generalized Tachyonic Teleparallel cosmology. Eur. Phys. J. 2019, C79, 324. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Said, J.L. Can Horndeski Theory be recast using Teleparallel Gravity? arXiv 2019, arXiv:gr-qc/1904.10791. [Google Scholar]
- Hohmann, M. Disformal Transformations in Scalar-Torsion Gravity. arXiv 2019, arXiv:gr-qc/1905.00451. [Google Scholar]
- Obukhov, Y.N.; Rubilar, G.F. Covariance properties and regularization of conserved currents in tetrad gravity. Phys. Rev. 2006, D73, 124017. [Google Scholar] [CrossRef]
- Krššák, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. 2015, C75, 519. [Google Scholar] [CrossRef]
- Krššák, M. Holographic Renormalization in Teleparallel Gravity. Eur. Phys. J. 2017, C77, 44. [Google Scholar] [CrossRef]
- Krššák, M. Variational Problem and Bigravity Nature of Modified Teleparallel Theories. arXiv 2017, arXiv:gr-qc/1705.01072. [Google Scholar]
- Krssak, M.; Van Den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. arXiv 2018, arXiv:gr-qc/1810.12932. [Google Scholar]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quant. Grav. 2017, 34, 145013. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef]
- De Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Teleparallel spin connection. Phys. Rev. 2001, D64, 027502. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Pereira, J.G. Metric affine approach to teleparallel gravity. Phys. Rev. 2003, D67, 044016. [Google Scholar] [CrossRef]
- Mosna, R.A.; Pereira, J.G. Some remarks on the coupling prescription of teleparallel gravity. Gen. Rel. Grav. 2004, 36, 2525–2538. [Google Scholar] [CrossRef]
- Maluf, J.W. Dirac spinor fields in the teleparallel gravity: Comment on ‘Metric affine approach to teleparallel gravity’. Phys. Rev. 2003, D67, 108501. [Google Scholar] [CrossRef]
- Mielke, E.W. Consistent coupling to Dirac fields in teleparallelism: Comment on ‘Metric-affine approach to teleparallel gravity’. Phys. Rev. 2004, D69, 128501. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Pereira, J.G. Lessons of spin and torsion: Reply to ‘Consistent coupling to Dirac fields in teleparallelism’. Phys. Rev. 2004, D69, 128502. [Google Scholar] [CrossRef]
- Bejarano, C.; Ferraro, R.; Guzmán, M.J. Kerr geometry in f(T) gravity. Eur. Phys. J. 2015, C75, 77. [Google Scholar] [CrossRef]
- Nashed, G.G.L. A special Kerr-solution in f(T) gravitational theories. Indian J. Phys. 2015, 89, 753–758. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 2015, 130, 124. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Spherically symmetric static spacetimes in vacuum f(T) gravity. Phys. Rev. 2011, D84, 083518. [Google Scholar] [CrossRef]
- Tamanini, N.; Boehmer, C.G. Good and bad tetrads in f(T) gravity. Phys. Rev. 2012, D86, 044009. [Google Scholar] [CrossRef]
- Bejarano, C.; Ferraro, R.; Guzmán, M.J. McVittie solution in f(T) gravity. Eur. Phys. J. 2017, C77, 825. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. JCAP 2018, 1808, 039. [Google Scholar] [CrossRef]
- Li, B.; Sotiriou, T.P.; Barrow, J.D. f(T) gravity and local Lorentz invariance. Phys. Rev. 2011, D83, 064035. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Li, B.; Barrow, J.D. Generalizations of teleparallel gravity and local Lorentz symmetry. Phys. Rev. 2011, D83, 104030. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. arXiv 2019, arXiv:gr-qc/1901.05472. [Google Scholar]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Jones, G.C.; Wang, J.E. Weyl card diagrams. Phys. Rev. 2005, D71, 124019. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. Gen. Rel. Grav. 2018, 50, 53. [Google Scholar] [CrossRef]
- Maluf, J.W.; Faria, F.F.; Ulhoa, S.C. On reference frames in spacetime and gravitational energy in freely falling frames. Class. Quant. Grav. 2007, 24, 2743–2754. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Hamiltonian formalism for f(T) gravity. Phys. Rev. 2018, D97, 104028. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Quest for the extra degree of freedom in f(T) gravity. Phys. Rev. 2018, D98, 124037. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. arXiv 2018, arXiv:gr-qc/1808.05565. [Google Scholar] [CrossRef]
- Blixt, D.; Hohmann, M.; Pfeifer, C. On the gauge fixing in the Hamiltonian analysis of general teleparallel theories. arXiv 2019, arXiv:gr-qc/1905.01048. [Google Scholar]
- Mccrea, J.D.; Bakler, P.; Gurses, M. A Kerr-Like Solution of the Poincare Gauge Field Equations. Nuovo Cim. 1987, B99, 171–177. [Google Scholar] [CrossRef]
- Bakler, P.; Gurses, M.; Hehl, F.W.; Mccrea, J.D. The Exterior Gravitational Field of a Charged Spinning Source in the Poincare Gauge Theory: A Kerr-Newman Metric With Dynamic Torsion. Phys. Lett. 1988, A128, 245–250. [Google Scholar] [CrossRef]
- Hohmann, M.; Jarv, L.; Ualikhanova, U. Dynamical systems approach and generic properties of f(T) cosmology. Phys. Rev. 2017, D96, 043508. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Model-independent reconstruction of f(T) teleparallel cosmology. Gen. Rel. Grav. 2017, 49, 141. [Google Scholar] [CrossRef]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 052. [Google Scholar] [CrossRef]
- Abedi, H.; Capozziello, S.; D’Agostino, R.; Luongo, O. Effective gravitational coupling in modified teleparallel theories. Phys. Rev. 2018, D97, 084008. [Google Scholar] [CrossRef]
- Basilakos, S.; Nesseris, S.; Anagnostopoulos, F.K.; Saridakis, E.N. Updated constraints on f(T) models using direct and indirect measurements of the Hubble parameter. J. Cosmol. Astropart. Phys. 2018, 2018, 008. [Google Scholar] [CrossRef]
- D’Agostino, R.; Luongo, O. Growth of matter perturbations in nonminimal teleparallel dark energy. Phys. Rev. 2018, D98, 124013. [Google Scholar] [CrossRef]
- El-Zant, A.; El Hanafy, W.; Elgammal, S. H0 Tension and the Phantom Regime: A Case Study in Terms of an Infrared f(T) Gravity. Astrophys. J. 2019, 871, 210. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Extended Gravity Cosmography. arXiv 2019, arXiv:gr-qc/1904.01427. [Google Scholar] [CrossRef]
- Abedi, H.; Capozziello, S. Gravitational waves in modified teleparallel theories of gravity. Eur. Phys. J. 2018, C78, 474. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, G.; Said, J.L.; Gakis, V.; Saridakis, E.N. Gravitational Waves in Modified Teleparallel Theories. Phys. Rev. 2018, D97, 124064. [Google Scholar] [CrossRef]
- Hohmann, M.; Krššák, M.; Pfeifer, C.; Ualikhanova, U. Propagation of gravitational waves in teleparallel gravity theories. Phys. Rev. 2018, D98, 124004. [Google Scholar] [CrossRef]
- Cai, Y.F.; Li, C.; Saridakis, E.N.; Xue, L. f(T) gravity after GW170817 and GRB170817A. Phys. Rev. 2018, D97, 103513. [Google Scholar] [CrossRef]
- Nunes, R.C.; Pan, S.; Saridakis, E.N. New observational constraints on f(T) gravity through gravitational-wave astronomy. Phys. Rev. 2018, D98, 104055. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Järv, L.; Hohmann, M.; Krššák, M.; Pfeifer, C. Flat Connection for Rotating Vacuum Spacetimes in Extended Teleparallel Gravity Theories. Universe 2019, 5, 142. https://doi.org/10.3390/universe5060142
Järv L, Hohmann M, Krššák M, Pfeifer C. Flat Connection for Rotating Vacuum Spacetimes in Extended Teleparallel Gravity Theories. Universe. 2019; 5(6):142. https://doi.org/10.3390/universe5060142
Chicago/Turabian StyleJärv, Laur, Manuel Hohmann, Martin Krššák, and Christian Pfeifer. 2019. "Flat Connection for Rotating Vacuum Spacetimes in Extended Teleparallel Gravity Theories" Universe 5, no. 6: 142. https://doi.org/10.3390/universe5060142
APA StyleJärv, L., Hohmann, M., Krššák, M., & Pfeifer, C. (2019). Flat Connection for Rotating Vacuum Spacetimes in Extended Teleparallel Gravity Theories. Universe, 5(6), 142. https://doi.org/10.3390/universe5060142