Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions
Abstract
:1. Introduction
2. The Method and Formalism
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. The horn, the hadron mass spectrum and the QCD phase diagram: The statistical model of hadron production in central nucleus-nucleus collisions. Nucl. Phys. A 2010, 834, 237c–240c. [Google Scholar] [CrossRef]
- Adamczyk, L.; et al. [STAR Collaboration]. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef] [Green Version]
- Bellwied, R. Sequential strangeness freeze-out. EPJ Web Conf. 2018, 171, 02006. [Google Scholar] [CrossRef]
- Turko, L.; et al. [NA61/SHINE Collaboration]. Looking for the phase transition—Recent NA61/SHINE results. Universe 2018, 4, 52. [Google Scholar] [CrossRef]
- Grebieszkow, K.; et al. [NA61/SHINE Collaboration]. News from strong interactions program of the NA61/SHINE experiment. Acta Phys. Polon. B Proc. Suppl. 2017, 10, 589–596. [Google Scholar] [CrossRef]
- Xu, N.; et al. [STAR Collaboration]. An overview of STAR experimental results. Nucl. Phys. A 2014, 931, 1. [Google Scholar] [CrossRef]
- Yang, C.; et al. [STAR Collaboration]. The STAR beam energy scan phase II physics and upgrades. Nucl. Phys. A 2017, 967, 800–803. [Google Scholar] [CrossRef]
- Arslandok, M.; et al. [ALICE Collaboration]. Event-by-event identified particle ratio fluctuations in Pb-Pb collisions with ALICE using the identity method. Nucl. Phys. A 2017, 956, 870–873. [Google Scholar] [CrossRef]
- Aaij, R.; et al. [LHCb Collaboration]. Measurement of the inelastic pp cross-section at a centre-of-mass energy of = 7 TeV. J. High Energy Phys. 2015, 2015, 129. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS Collaboration]. Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2018, 2018, 002. [Google Scholar] [CrossRef]
- Aaboud, M.; et al. [ATLAS Collaboration]. Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at = 13 TeV using the ATLAS detector. Eur. Phys. J. C 2017, 77, 292. [Google Scholar] [CrossRef] [PubMed]
- Klay, J.L.; et al. [E895 Collaboration]. Charged pion production in 2 to 8A GeV central Au + Au collisions. Phys. Rev. C 2003, 68, 054905. [Google Scholar] [CrossRef]
- Ahle, L.; et al. [E866/E917 Collaboration]. An excitation function of K− and K+ production in Au + Au reactions at the AGS. Phys. Lett. B 2000, 409, 53–60. [Google Scholar] [CrossRef]
- Klay, J.L.; et al. [E895 Collaboration]. Longitudinal flow from (2–8)A GeV Au + Au collisions. Phys. Rev. Lett. 2002, 88, 102301. [Google Scholar] [CrossRef] [PubMed]
- Akiba, Y. [E802 Collaboration]. Particle production in Au + Au collisions from BNL E866. Nucl. Phys. A 1996, 610, 139c. [Google Scholar] [CrossRef]
- Ahle, L.; et al. [E802 Collaboration]. Particle production at high baryon density in central Au + Au reactions at 11.6A GeV/c. Phys. Rev. C 1998, 57, R466–R477. [Google Scholar] [CrossRef]
- Adcox, K.; et al. [PHENIX Collaboration]. Single identified hadron spectra from = 130 GeV Au + Au collisions. Phys. Rev. C 2004, 69, 024904. [Google Scholar] [CrossRef]
- Adcox, K.; et al. [PHENIX Collaboration]. Centrality dependence of π+/π−, K+/K−, p and production from = 13 GeV Au + Au collisions at RHIC. Phys. Rev. Lett. 2002, 88, 242301. [Google Scholar] [CrossRef]
- Adler, S.S.; et al. [PHENIX Collaboration]. Identified charged particle spectra and yields in Au + Au collisions at = 200 GeV. Phys. Rev. C 2004, 69, 034909. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [STAR Collaboration]. Identified particle production, azimuthal anisotropy, and interferometry measurements in Au + Au collisions at = 9.2 GeV. Phys. Rev. C 2010, 81, 024911. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [STAR Collaboration]. Systematic measurements of identified particle spectra in pp, d + Au and Au + Au collisions from STAR. Phys. Rev. C 2009, 79, 034909. [Google Scholar] [CrossRef]
- Adams, J.; et al. [STAR Collaboration]. Identified particle distributions in pp and Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 112301. [Google Scholar] [CrossRef] [PubMed]
- Alt, C.; et al. [NA49 Collaboration]. Pion and kaon production in central Pb + Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement. Phys. Rev. C 2008, 77, 024903. [Google Scholar] [CrossRef]
- Afanasiev, S.V.; et al. [NA49 Collaboration]. Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 2002, 66, 054902. [Google Scholar] [CrossRef]
- Alt, C.; et al. [NA49 Collaboration]. Energy and centrality dependence of and p production and the / ratio in Pb + Pb collisions between 20A GeV and 158A GeV. Phys. Rev. C 2006, 73, 044910. [Google Scholar] [CrossRef]
- Afanasiev, S.V.; et al. [NA49 Collaboration]. Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies. Phys. Rev. C 2004, 69, 024902. [Google Scholar]
- Bearden, I.G.; et al. [NA44 Collaboration]. Particle production in central Pb + Pb collisions at 158A GeV/c. Phys. Rev. C 2002, 66, 044907. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [ALICE Collaboration]. Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef]
- Aduszkiewicz, A.; et al. [NA61/SHINE Collaboration]. Measurements of π±, K±, p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 2017, 77, 671. [Google Scholar] [CrossRef]
- Abelev, B.I.; et al. [STAR Collaboration]. Strange particle production in p+p collisions at = 200 GeV. Phys. Rev. C 2007, 75, 064901. [Google Scholar] [CrossRef]
- Aamodt, K.; et al. [ALICE Collaboration]. Production of pions, kaons and protons in pp collisions at = 900 GeV with ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1655. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. [CMS Collaboration]. Study of the inclusive production of charged pions, kaons, and protons in pp collisions at = 0.9, 2.76, and 7 TeV. Eur. Phys. J. C 2012, 72, 2164. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS Collaboration]. Measurement of charged pion, kaon, and proton production in proton-proton collisions at = 13 TeV. Phys. Rev. D 2017, 96, 112003. [Google Scholar] [CrossRef]
- Gao, Y.-Q.; Lao, H.-L.; Liu, F.-H. Chemical potentials of light flavor quarks from yield ratios of negative to positive particles in Au+Au collisions at RHIC. Adv. High Energy Phys. 2018, 2018, 6047960. [Google Scholar] [CrossRef]
- Koch, P.; Rafelski, J.; Greiner, W. Strange hadron in hot nuclear matter. Phys. Lett. B 1983, 123, 151–154. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Magestro, D.; Redlich, K.; Stachel, J. Hadron production in Au-Au collisions at RHIC. Phys. Lett. B 2001, 518, 41–46. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Thermal hadron production in relativistic nuclear collisions. Acta Phys. Pol. B 2009, 40, 1005–1012. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167. [Google Scholar] [CrossRef]
- Arsene, I.; et al. [BRAHMS Collaboration]. Quark gluon plasma and color glass condensate at RHIC? the perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, F.-H. On extraction of chemical potentials of quarks from particle transverse momentum spectra in high energy collisions. Adv. High Energy Phys. 2015, 2015, 137058. [Google Scholar] [CrossRef]
- Yu, N.; Luo, X.-F. Particle decay from statistical thermal model in high-energy nucleus-nucleus collisions. Eur. Phys. J. A 2019, 55, 26. [Google Scholar] [CrossRef]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I.; Stoecker, H.; Motornenko, A. Hadron yields and fluctuations at energies available at the CERN Super Proton Synchrotron: System-size dependence from Pb + Pb to p+p collisions. Phys. Rev. C 2019, 99, 034909. [Google Scholar]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I.; Stoecker, H. Statistical hadron-gas treatment of systems created in proton-proton interactions at energies available at the CERN Super Proton Synchrotron. Phys. Rev. C 2018, 98, 054909. [Google Scholar] [CrossRef] [Green Version]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I. Surprises for the chemical freeze-out lines from the new data in p+p and A+A collisions. Acta Phys. Pol. B Proc. Supp. 2017, 10, 467–471. [Google Scholar] [CrossRef]
- Vovchenko, V.; Begun, V.V.; Gorenstein, M.I. Hadron multiplicities and chemical freeze-out conditions in proton-proton and nucleus-nucleus collisions. Phys. Rev. C 2016, 93, 064906. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lao, H.-L.; Gao, Y.-Q.; Liu, F.-H. Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe 2019, 5, 152. https://doi.org/10.3390/universe5060152
Lao H-L, Gao Y-Q, Liu F-H. Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe. 2019; 5(6):152. https://doi.org/10.3390/universe5060152
Chicago/Turabian StyleLao, Hai-Ling, Ya-Qin Gao, and Fu-Hu Liu. 2019. "Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions" Universe 5, no. 6: 152. https://doi.org/10.3390/universe5060152
APA StyleLao, H. -L., Gao, Y. -Q., & Liu, F. -H. (2019). Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe, 5(6), 152. https://doi.org/10.3390/universe5060152