The General Linear Cartan Khronon †
Abstract
:- If we fix such that , the cotetrad transforms as , in particular, .
- If we fix such that , the tetrad transforms as , in particular, .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feynman, R.P. Feynman Lectures on Gravitation; Addison-Wesley: Reading, PA, USA, 1996. [Google Scholar]
- Grignani, G.; Nardelli, G. Gravity and the Poincare group. Phys. Rev. D 1992, 45, 2719–2731. [Google Scholar] [CrossRef]
- Cartan, É. On Manifolds with an Affine Connection and the Theory of General Relativity; Monographs and Textbooks in Physical Science; Bibliopolis: Berkeley, CA, USA, 1986. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar]
- Złośnik, T.; Urban, F.; Marzola, L.; Koivisto, T. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Class. Quantum Gravity 2018, 35, 235003. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef]
- Wallner, R.P. Notes on Gauge Theory and Gravitation. Acta Phys. Aust. 1982, 54, 165. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. J. Cosmol. Astropart. Phys. 2018, 2018, 039. [Google Scholar] [CrossRef]
- Fontanini, M.; Huguet, E.; Le Delliou, M. Teleparallel gravity equivalent of general relativity as a gauge theory: Translation or Cartan connection? Phys. Rev. D 2019, 99, 064006. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.G.; Obukhov, Y.N. Gauge Structure of Teleparallel Gravity. Universe 2019, 5, 139. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. The canonical frame of purified gravity. arXiv 2019, arXiv:1903.12072. [Google Scholar]
- Koivisto, T. An integrable geometrical foundation of gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1840006. [Google Scholar] [CrossRef]
- Wise, D.K. MacDowell-Mansouri gravity and Cartan geometry. Class. Quantum Gravity 2010, 27, 155010. [Google Scholar] [CrossRef]
- Gielen, S.; Wise, D.K. Lifting General Relativity to Observer Space. J. Math. Phys. 2013, 54, 052501. [Google Scholar] [CrossRef]
- Westman, H.F.; Zlosnik, T.G. An introduction to the physics of Cartan gravity. Ann. Phys. 2015, 361, 330–376. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 2016, 57, 082502. [Google Scholar] [CrossRef] [Green Version]
- Złośnik, T.G.; Westman, H.F. A first-order approach to conformal gravity. Class. Quantum Gravity 2017, 34, 245001. [Google Scholar] [CrossRef] [Green Version]
- Capovilla, R.; Jacobson, T.; Dell, J.; Mason, L.J. Selfdual two forms and gravity. Class. Quantum Gravity 1991, 8, 41–57. [Google Scholar] [CrossRef]
- Nesti, F.; Percacci, R. Graviweak Unification. J. Phys. A 2008, 41, 075405. [Google Scholar] [CrossRef]
- Weyl, H. Gravitation and electricity. Sitzungsber. Königl. Preuss. Akad. Wiss. 1918, 26, 465–480. [Google Scholar] [CrossRef]
- Weyl, H. Electron and Gravitation. 1. Z. Phys. 1929, 56, 330–352. (In German) [Google Scholar] [CrossRef]
- Wheeler, J.T. General relativity as a biconformal gauge theory. Nucl.Phys. B 2019, 943. [Google Scholar] [CrossRef]
- Burrage, C.; Copeland, E.J.; Käding, C.; Millington, P. Symmetron scalar fields: Modified gravity, dark matter, or both? Phys. Rev. D 2019, 99, 043539. [Google Scholar] [CrossRef] [Green Version]
- Beltran Jimenez, J.; Koivisto, T.S. Extended Gauss-Bonnet gravities in Weyl geometry. Class. Quantum Gravity 2014, 31, 135002. [Google Scholar] [CrossRef]
- Skordis, C.; Zlosnik, T. A general class of gravitational theories as alternatives to dark matter where the speed of gravity always equals the speed of light. arXiv 2019, arXiv:1905.09465. [Google Scholar]
- Guendelman, E.; Singleton, D.; Yongram, N. A two measure model of dark energy and dark matter. J. Cosmol. Astropart. Phys. 2012, 2012, 044. [Google Scholar] [CrossRef]
1 | This is contrary to what was implied in references [10,11]. We agree with reference [11] that the principal bundle of the displacement group is not a vector bundle, since in gauge theories the fibers are actually torsors instead of groups (which does not change the conclusion of references [10] that such a displacement bundle is topologically trivial). |
2 | Consider an affine connection in the tensor representation. If without curvature, it will be given by a GL transformation of the zero connection as , and if one further assumes the vanishing of torsion , it follows further that , which is nothing but the Jacobian of a coordinate transformation. |
3 | |
4 | |
5 | It seems evident that the equations of motion for and are trivially satisfied by . Note that the dilation invariance is retained. |
6 | In contrast, gravitational alternatives to dark matter usually assume extra fields such as scalars [24], vectors [25], or both [26]. In the two-measure model [27] appears the interesting line element , but their 4 scalars (along with a fifth non-canonical one) are introduced in addition to the , not to supersede it as in reference [5] and here. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koivisto, T.; Hohmann, M.; Złośnik, T. The General Linear Cartan Khronon. Universe 2019, 5, 168. https://doi.org/10.3390/universe5070168
Koivisto T, Hohmann M, Złośnik T. The General Linear Cartan Khronon. Universe. 2019; 5(7):168. https://doi.org/10.3390/universe5070168
Chicago/Turabian StyleKoivisto, Tomi, Manuel Hohmann, and Tom Złośnik. 2019. "The General Linear Cartan Khronon" Universe 5, no. 7: 168. https://doi.org/10.3390/universe5070168
APA StyleKoivisto, T., Hohmann, M., & Złośnik, T. (2019). The General Linear Cartan Khronon. Universe, 5(7), 168. https://doi.org/10.3390/universe5070168