Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters
Abstract
:1. Introduction
2. The Experiment
3. Results and Discussion
3.1. Backgrounds Reduction and Model of the Backgrounds
- distribution of particles of Th and U with their daughters not discarded by the pulse-shape analysis; and,
- two-neutrino double beta decay of Cd with the half-life yr [47].
- K, RaTh, ThPb, RaPb in the internal and external copper details, the quartz light guides, the PbWO crystal light-guide, the PMTs;
- PbPb in the PbWO crystal light-guide;
- ThPb and RaPb in the CdWO crystal scintillators; and,
- Co and Co in the internal copper bricks.
3.2. Limits on 2EC, EC and Processes in Cd
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giuliani, A.; Poves, A. Neutrinoless Double-Beta Decay. AHEP 2012, 2012, 857016. [Google Scholar] [CrossRef]
- Cremonesi, O.; Pavan, M. Challenges in Double Beta Decay. AHEP 2014, 2014, 951432. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef] [Green Version]
- Bilenky, S.M.; Giunti, C. Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 2015, 30, 1530001. [Google Scholar] [CrossRef] [Green Version]
- Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. Neutrinoless Double Beta Decay: 2015 Review. AHEP 2016, 2016, 2162659. [Google Scholar] [CrossRef] [Green Version]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless double beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef] [Green Version]
- Asaka, T.; Shaposhnikov, M. The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Deppisch, F.F.; Graf, L.; Harz, J.; Huang, W.C. Neutrinoless double beta decay and the baryon asymmetry of the Universe. Phys. Rev. D 2018, 98, 055029. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review. Universe 2020, 6, 159. [Google Scholar] [CrossRef]
- Hirsch, M.; Muto, K.; Oda, T.; Klapdor-Kleingrothaus, H.V. Nuclear structure calculation of β+β+, β+EC, and EC/EC decay matrix elements. Z. Phys. A 1994, 347, 151–160. [Google Scholar] [CrossRef]
- Winter, R. Double K capture and single K capture with positron emission. Phys. Rev. 1955, 100, 142–144. [Google Scholar] [CrossRef]
- Voloshin, M.B.; Mitselmakher, G.V.; Eramzhyan, R.A. Conversion of an atomic electron into a positron and double β+ decay. JETP Lett. 1982, 35, 656–659. [Google Scholar]
- Bernabeu, J.; De Rujula, A.; Jarlskog, C. Neutrinoless double electron capture as a tool to measure the electron neutrino mass. Nucl. Phys. B 1983, 223, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Krivoruchenko, M.I.; Šimkovic, F.; Frekers, D.; Faessler, F. Resonance enhancement of neutrinoless double electron capture. Nucl. Phys. A 2011, 859, 140–171. [Google Scholar] [CrossRef] [Green Version]
- Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. Weak decay of 130Ba and 132Ba: Geochemical measurements. Phys. Rev. C 2001, 64, 035205. [Google Scholar] [CrossRef] [Green Version]
- Pujol, M.; Marty, B.; Burnard, B.P.; Philippot, P. Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 2009, 73, 6834–6846. [Google Scholar] [CrossRef]
- Meshik, A.; Pravdivtseva, O. Weak Decay of Tellurium and Barium Isotopes in Geological Samples: Current Status. JPS Conf. Proc. 2017, 14, 020702. [Google Scholar]
- Gavrilyuk, Y.M.; Gangapshev, A.M.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Ratkevich, S.S. Indications of 2ν2K capture in 78Kr. Phys. Rev. C 2013, 87, 035501. [Google Scholar] [CrossRef]
- Ratkevich, S.S.; Gangapshev, A.M.; Gavrilyuk, Y.M.; Karpeshin, F.F.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Trzhaskovskaya, M.B.; Yakimenko, S.P. Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay. Phys. Rev. C 2017, 96, 065502. [Google Scholar] [CrossRef] [Green Version]
- XENON Collaboration. Observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature 2019, 568, 532–535. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; et al. Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator. Phys. Rev. C 2012, 85, 044610. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gring, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Kiel, H.; Münstermann, D.; Zuber, K. A search for various double beta decay modes of Cd, Te, and Zn isotopes. Nucl. Phys. A 2003, 723, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Ebert, J.; Fritts, M.; Gößling, C.; Göpfert, T.; Gehre, D.; Hagner, C.; Köttig, N.T.; Neddermann, T.; Oldorf, C.; Quante, T.; et al. Current status and future perspectives of the COBRA experiment. Adv. High Energy Phys. 2013, 2013, 703572. [Google Scholar] [CrossRef] [Green Version]
- Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Oldorf, C.; et al. Results of a search for neutrinoless double-β decay using the COBRA demonstrator. Phys. Rev. C 2016, 94, 024603. [Google Scholar] [CrossRef] [Green Version]
- Rukhadze, N.I.; Briancon, C.; Brudanin, V.B.; Egorov, V.G.; Klimenko, A.A.; Kovalik, A.; Timkin, V.V.; Čhermák, P.; Shitov, Y.A.; Šimkovic, F.; et al. Search for double beta decay of 106Cd. Bull. Russ. Acad. Sci. Phys. 2011, 75, 879–882. [Google Scholar] [CrossRef]
- Rukhadze, N.I.; Bakalyarov, A.M.; Briançon, C.; Brudanin, V.B.; Cermák, P.; Egorov, V.G.; Klimenko, A.A.; Kovalík, A.; Lebedev, V.I.; Mamedov, F.; et al. New limits on double beta decay of 106Cd. Nucl. Phys. A 2011, 852, 197–206. [Google Scholar] [CrossRef]
- Rukhadze, N.I.; Beneš, P.; Briançon, C.; Brudanin, V.B.; Cermák, P.; Danevich, F.A.; Egorov, V.G.; Gusev, K.N.; Klimenko, A.A.; Kovalenko, V.E.; et al. Search for double electron capture of 106Cd. Phys. At. Nucl. 2006, 69, 2117–2123. [Google Scholar] [CrossRef]
- Rukhadze, N.I.; Brudanin, V.B.; Egorov, V.G.; Klimenko, A.A.; Kovalik, A.; Kouba, P.; Piquemal, F.; Rozov, S.V.; Rukhadze, E.; Salamatin, A.V.; et al. Search for double beta decay of 106Cd in the TGV-2 experiment. J. Phys. Conf. Ser. 2016, 718, 062049. [Google Scholar] [CrossRef] [Green Version]
- Rukhadze, N.; on behalf of TGV Collaboration. Search for double beta decay of 106Cd with the TGV-2 spectrometer. PoS 2016, 281, 245. [Google Scholar]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Bukilic, N.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Dossovitskiy, A.E.; et al. Development of enriched 106CdWO4 crystal scintillators to search for double β decay processes in 106Cd. Nucl. Instrum. Meth. A 2010, 615, 301–306. [Google Scholar] [CrossRef]
- Laubenstein, M.; Hult, M.; Gasparro, J.; Arnold, D.; Neumaier, S.; Heusser, G.; Köhler, M.; Povinec, P.; Reyss, J.-L.; Schwaiger, M.; et al. Underground measurements of radioactivity. Appl. Radiat. Isot. 2004, 61, 167. [Google Scholar] [CrossRef] [PubMed]
- Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Di Marco, A.; et al. Search for double-β decay in 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with four HPGe detectors. Phys. Rev. C 2016, 93, 045502. [Google Scholar] [CrossRef] [Green Version]
- Polischuk, O.G.; Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; et al. New limit on two neutrino electron capture with positron emission in 106Cd. AIP Conf. Proc. 2019, 2165, 020020. [Google Scholar]
- De Frenne, D.; Negret, A. Nuclear data sheets for A = 106. Nucl. Data Sheets 2008, 109, 943–1102. [Google Scholar] [CrossRef]
- Boiko, R.S.; Virich, V.D.; Danevich, F.A.; Dovbush, T.I.; Kovtun, G.P.; Nagornyi, S.S.; Nisi, S.; Samchuk, A.I.; Solopikhin, D.A.; Shcherban, A.P. Ultrapurification of archaeological lead. Inorg. Mater. 2011, 47, 645–648. [Google Scholar] [CrossRef]
- Danevich, F.A.; Kim, S.K.; Kim, H.J.; Kim, Y.D.; Kobychev, V.V.; Kostezh, A.B.; Kropivyansky, B.N.; Laubenstein, M.; Mokina, V.M.; Nagorny, S.S.; et al. Ancient Greek lead findings in Ukraine. Nucl. Instr. Meth. A 2009, 603, 328–332. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; He, H.L.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 2008, 56, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Kawrakow, I.; Rogers, D.W.O. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC Report PIRS-701; National Research Council of Canada: Ottawa, ON, USA, 2003. [Google Scholar]
- Blachot, J. Nuclear data sheets for A = 113. Nucl. Data Sheets 2010, 111, 1471–1618. [Google Scholar] [CrossRef]
- Jagam, P.; Simpson, J.J. Measurements of Th, U and K concentrations in a variety of materials. Nucl. Instr. Meth. A 1993, 324, 389–398. [Google Scholar] [CrossRef]
- Righi, S.; Betti, M.; Bruzzi, L.; Mazzotti, G. Monitoring of natural radioactivity in working places. Microchem. J. 2000, 67, 119–126. [Google Scholar] [CrossRef]
- Danevich, F.A.; Tretyak, V.I. Radioactive contamination of scintillators. Int. J. Mod. Phys. A 2018, 33, 1843007. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; et al. Development of radiopure cadmium tungstate crystal scintillators from enriched 106Cd and 116Cd to search for double beta decay. AIP Conf. Proc. 2013, 1549, 201–204. [Google Scholar]
- Poda, D.V.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; et al. CdWO4 crystal scintillators from enriched isotopes for double beta decay experiments. Radiat. Meas. 2013, 56, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, A.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef] [Green Version]
- Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, Y.G. Event generator DECAY4 for simulation of double-beta processes and decays of radioactive nuclei. Phys. Atom. Nucl. 2000, 63, 1282–1287. [Google Scholar] [CrossRef] [Green Version]
- Feldman, G.J.; Cousins, R.D. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 1998, 57, 3873–3889. [Google Scholar] [CrossRef] [Green Version]
- Kotila, J.; Iachello, F. Phase space factors for β+β+ decay and competing modes of double-β decay. Phys. Rev. C 2013, 87, 024313. [Google Scholar] [CrossRef] [Green Version]
- Mirea, M.; Pahomi, T.; Stoica, S. Values of the phase space factors involved in double beta decay. Rom. Rep. Phys. 2015, 67, 872–889. [Google Scholar]
- Barabash, A.S.; Umatov, V.I.; Gurriarán, R.; Hubert, F.; Hubert, P.; Aunola, M.; Suhonen, J. Theoretical and experimental investigation of the double beta processes in 106Cd. Nucl. Phys. A 1996, 604, 115–128. [Google Scholar] [CrossRef]
- Toivanen, J.; Suhonen, J. Study of several double-β-decaying nuclei using the renormalized proton-neutron quasiparticle random-phase approximation. Phys. Rev. C 1997, 55, 2314–2323. [Google Scholar] [CrossRef]
- Rumyantsev, O.A.; Urin, M.H. The strength of the analog and Gamow-Teller giant resonances and hindrance of the 2νββ-decay rate. Phys. Lett. B 1998, 443, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Fermi surface quasi particle model nuclear matrix elements for two neutrino double beta decays. J. Phys. G 2017, 44, 115201. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Casalboni, M.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; et al. Performances of the new high quantum efficiency PMTs in DAMA/LIBRA. JINST 2012, 7, 03009. [Google Scholar] [CrossRef]
1. | |
2. | In the present work all the limits are given with 90% C.L. Only statistical errors coming from the data fluctuations were taken into account in the estimations of the values, and systematic contributions have not been included in the half-life limit values. |
Material | K | Co | Co | Y | Pb | Ra | Ac | Th |
---|---|---|---|---|---|---|---|---|
PbWO crystal | ≤0.09 | – | – | – | ≤ | ≤ 0.07 | ≤0.28 | ≤0.23 |
CdWO crystals | – | – | – | – | – | ≤0.27 | – | ≤0.014 |
Quartz light-guides | ≤18 | – | – | – | – | ≤3.3 | ≤0.6 | ≤0.6 |
Copper internal | ≤0.8 | ≤0.26 | ≤0.5 | ≤0.005 | – | ≤3.0 | ≤1.3 | ≤0.019 |
Copper external | ≤1.4 | – | – | – | – | ≤1.5 | ≤3.2 | ≤0.026 |
PMTs | ≤1060 | – | – | – | – | ≤140 | ≤1030 | ≤250 |
Decay, | Exp. | (yr) at 90% C.L. | ||||
---|---|---|---|---|---|---|
Level of Pd | Selection | Present Work | Best Previous | |||
EC 2 1128 | CC 616 | 0.135 | 0.909 | 92 | ≥ | ≥ [34] |
EC 0 1134 | CC 622 | 0.188 | 0.909 | 86 | ≥ | ≥ [34] |
EC 2 1562 | CC 1050 | 0.138 | 0.909 | 80 | ≥ | ≥ [34] |
EC 0 1706 | CC 1194 | 0.134 | 0.909 | 90 | ≥ | ≥ [34] |
EC 0 2001 | CC 873 | 0.153 | 0.909 | 46 | ≥ | ≥ [34] |
EC 0 2278 | CC 1766 | 0.091 | 0.909 | 131 | ≥ | ≥ [34] |
EC g.s. | AC | 0.522 | 0.955 | 367 | ≥ | ≥ [21] |
EC 2 512 | AC | 0.319 | 0.955 | 443 | ≥ | ≥ [21] |
EC 2 1128 | CC 616 | 0.118 | 0.909 | 110 | ≥ | [34] |
EC 0 1134 | CC 622 | 0.155 | 0.909 | 109 | ≥ | ≥ [34] |
EC 2 1562 | CC 1050 | 0.136 | 0.909 | 45 | ≥ | ≥ [34] |
EC 0 1706 | CC 1194 | 0.120 | 0.909 | 27 | ≥ | ≥ [34] |
EC 0 2001 | CC 873 | 0.135 | 0.909 | 177 | ≥ | ≥ [34] |
EC 0 2278 | CC 1766 | 0.079 | 0.909 | 29 | ≥ | ≥ [34] |
Res. K 2718 | CC 1046 + 1160 | 0.215 | 0.909 | 33 | ≥ | ≥ [34] |
Res. 4 2741 | AC | 0.454 | 0.952 | 663 | ≥ | ≥ [21] |
Res. 2,3 2748 | AC | 0.318 | 0.955 | 432 | ≥ | ≥ [34] |
EC g.s. | CC 511&511 | 0.040 | 0.703 | 6.7 | ≥ | ≥ [34] |
EC 2 512 | CC 511&511 | 0.047 | 0.459 | 4.0 | ≥ | ≥ [34] |
EC 2 1128 | CC 511&511 | 0.029 | 0.509 | 5.6 | ≥ | ≥ [34] |
EC 0 1134 | CC 511&511 | 0.031 | 0.603 | 11 | ≥ | ≥ [34] |
EC g.s. | CC 511 | 0.376 | 0.909 | 12 | ≥ [21] | |
EC 2 512 | CC 511 | 0.384 | 0.909 | 18 | ≥ [34] | |
EC 2 1128 | CC 511 | 0.314 | 0.909 | 14 | ≥ | ≥ [34] |
EC 0 1134 | CC 511&511 | 0.030 | 0.385 | 5.0 | ≥ | ≥ [34] |
g.s. | CC 511&511 | 0.052 | 0.385 | 5.8 | ≥ | ≥ [34] |
2 512 | CC 511&511 | 0.048 | 0.323 | 3.4 | ≥ | ≥ [34] |
g.s. | CC 511 | 0.391 | 0.909 | 30 | ≥ | ≥ [34] |
2 512 | CC 511 | 0.370 | 0.909 | 39 | ≥ | ≥ [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Klavdiienko, V.R.; et al. Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters. Universe 2020, 6, 182. https://doi.org/10.3390/universe6100182
Belli P, Bernabei R, Brudanin VB, Cappella F, Caracciolo V, Cerulli R, Danevich FA, Incicchitti A, Kasperovych DV, Klavdiienko VR, et al. Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters. Universe. 2020; 6(10):182. https://doi.org/10.3390/universe6100182
Chicago/Turabian StyleBelli, Pierluigi, R. Bernabei, V.B. Brudanin, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, Antonella Incicchitti, D.V. Kasperovych, V.R. Klavdiienko, and et al. 2020. "Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters" Universe 6, no. 10: 182. https://doi.org/10.3390/universe6100182
APA StyleBelli, P., Bernabei, R., Brudanin, V. B., Cappella, F., Caracciolo, V., Cerulli, R., Danevich, F. A., Incicchitti, A., Kasperovych, D. V., Klavdiienko, V. R., Kobychev, V. V., Merlo, V., Polischuk, O. G., Tretyak, V. I., & Zarytskyy, M. M. (2020). Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters. Universe, 6(10), 182. https://doi.org/10.3390/universe6100182