On the Discrete Version of the Schwarzschild Problem
Abstract
:1. Introduction
2. The Method
3. Calculation
3.1. Equations in the Leading Order over Metric Variations
3.2. Discrete Version of the Lense–Thirring Metric
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Hamber, H.W. Quantum Gravity on the Lattice. Gen. Rel. Gravit. 2009, 41, 817. [Google Scholar] [CrossRef] [Green Version]
- Regge, T. General relativity theory without coordinates. Nuovo Cimento 1961, 19, 558. [Google Scholar] [CrossRef]
- Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, M.C. Lattice gravity near the continuum limit. Nucl. Phys. B 1984, 245, 343. [Google Scholar] [CrossRef]
- Cheeger, J.; Müller, W.; Shrader, R. On the curvature of the piecewise flat spaces. Commun. Math. Phys. 1984, 92, 405. [Google Scholar] [CrossRef] [Green Version]
- Hamber, H.W.; Williams, R.M. Newtonian Potential in Quantum Regge Gravity. Nucl. Phys. B 1995, 435, 361. [Google Scholar] [CrossRef] [Green Version]
- Hamber, H.W.; Williams, R.M. On the Measure in Simplicial Gravity. Phys. Rev. D 1999, 59, 064014. [Google Scholar] [CrossRef] [Green Version]
- Perez, A. The spin-foam approach to quantum gravity. Living Rev. Relativ. 2013, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Ponzano, G.; Regge, T. Semiclassical limit of Racah Coeficients. In Spectroscopy and Group Theoretical Methods in Physics: Racah Memorial Volume; Bloch, F., Cohen, S.G., de Shalit, A., Sambursky, S., Talmi, I., Eds.; Publishing House: North-Holland, Amsterdam, The Netherlands, 1968; pp. 1–58. [Google Scholar]
- Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative Quantum Gravity. Phys. Rep. 2012, 519, 127. [Google Scholar] [CrossRef] [Green Version]
- Miković, A.; Vojinović, M. Quantum gravity for piecewise flat spacetimes. SFIN 2018, XXXI, 267. [Google Scholar]
- Wong, C.-Y. Application of Regge calculus to the Schwarzshild and Reissner-Nordstrøm geometries. J. Math. Phys. 1971, 12, 70. [Google Scholar] [CrossRef]
- Brewin, L. Einstein-Bianchi system for smooth lattice general relativity. I. The Schwarzschild spacetime. Phys. Rev. D 2012, 85, 124045. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.A.; Williams, R.M. Dynamics of the Friedmann universe using Regge calculus. Phys. Rev. D 1973, 7, 965. [Google Scholar] [CrossRef]
- Gentle, A.P. A cosmological solution of Regge calculus. Class. Quantum Gravity 2013, 30, 085004. [Google Scholar] [CrossRef] [Green Version]
- Brewin, L.C. A numerical study of the Regge calculus and Smooth Lattice methods on a Kasner cosmology. Class. Quantum Gravity 2015, 32, 195008. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.G.; Williams, R.M. Regge calculus models of closed lattice universes. Phys. Rev. D 2016, 93, 023502. [Google Scholar] [CrossRef] [Green Version]
- Glaser, L.; Loll, R. CDT and cosmology. Comptes Rendus Physique 2017, 18, 265. [Google Scholar] [CrossRef]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett. 2018, 121, 241301. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum extension of the Kruskal spacetime. Phys. Rev. D 2018, 98, 126003. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, M.; Ryan, J.P.; Speziale, S. Discrete gravity models and Loop Quantum Gravity: A short review. SIGMA 2012, 8, 052. [Google Scholar] [CrossRef] [Green Version]
- Khatsymovsky, V.M. On the non-perturbative graviton propagator. Int. J. Mod. Phys. A 2018, 33, 1850220. [Google Scholar] [CrossRef]
- Khatsymovsky, V.M. On the discrete Christoffel symbols. Int. J. Mod. Phys. A 2019, 34, 1950186. [Google Scholar] [CrossRef] [Green Version]
- Khatsymovsky, V.M. On the discrete version of the black hole solution. Int. J. Mod. Phys. A 2020, 35, 2050058. [Google Scholar] [CrossRef]
- Khatsymovsky, V.M. Defining integrals over connections in the discretized gravitational functional integral. Mod. Phys. Lett. A 2010, 25, 1407. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J. Regge calculus and discretized gravitational functional integrals. In Nonperturbative Quantum Field Theory: Mathematical Aspects and Applications, Selected Papers; Publishing House, World Scientific: Singapore, 1992; p. 523, IHES preprint 1981 (unpublished). [Google Scholar]
- Holst, S. Barbero’s Hamiltonian Derived from a Generalized Hilbert-Palatini Action. Phys. Rev. D 1996, 53, 5966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatibene, L.; Francaviglia, M.; Rovelli, C. Spacetime Lagrangian Formulation of Barbero-Immirzi Gravity. Class. Quantum Gravity 2007, 24, 4207. [Google Scholar] [CrossRef]
- Barbero, J.F. Real Ashtekar Variables for Lorentzian Signature Space-times. Phys. Rev. D 1995, 51, 5507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immirzi, G. Quantum Gravity and Regge Calculus. Nucl. Phys. Proc. Suppl. 1997, 57, 65. [Google Scholar] [CrossRef] [Green Version]
- Khatsymovsky, V.M. Tetrad and self-dual formulations of Regge calculus. Class. Quantum Gravity 1989, 6, L249. [Google Scholar] [CrossRef]
- Arnowitt, R.; Deser, S.; Misner, C.W. The Dynamics of General Relativity. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962; Chapter 7; p. 227, (Preprint arXiv:gr-qc/0405109). [Google Scholar]
- DeWitt, B.S. Quantization of fields with infinite-dimensional invariance groups. III. Generalized Shwinger-Feynman theory. J. Math. Phys. 1962, 3, 1073. [Google Scholar] [CrossRef]
- Misner, C.W. Feynman quantization of general relativity. Rev. Mod. Phys. 1957, 29, 497. [Google Scholar] [CrossRef]
- Rocek, M.; Williams, R.M. The quantization of Regge calculus. Z. Phys. C 1984, 21, 371. [Google Scholar] [CrossRef]
- Lemaitre, G. L’univers en expansion. Ann. Soc. Sci. Brux. A 1933, 53, 51. [Google Scholar]
- Stanyukovich, K.P. On the question of the Schwarzschild metric in a synchronous reference frame. Rep. USSR Acad. Sci. 1969, 187, 75. [Google Scholar]
- Williams, R.M. Quantum Regge calculus model in the Lorentzian domain and its Hamiltonian formulation. Class. Quantum Gravity 1986, 3, 853. [Google Scholar] [CrossRef]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 1921, 173, 677. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörperproblems inder Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Fys. 1922, 16, 1. [Google Scholar]
- Thirring, H.; Lense, J. Über den Einfluss der Eigenrotation der Zentralkörperauf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Painleve-Gullstrand form of the Lense-Thirring spacetime. arXiv 2020, arXiv:2006.14258. [Google Scholar]
- Sorkin, R. The electromagnetic field on a simplicial net. J. Math. Phys. 1975, 16, 2432. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, D. Geometric formulation of electrodynamics and general relativity in discrete space-time. J. Math. Phys. 1977, 18, 165. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatsymovsky, V. On the Discrete Version of the Schwarzschild Problem. Universe 2020, 6, 185. https://doi.org/10.3390/universe6100185
Khatsymovsky V. On the Discrete Version of the Schwarzschild Problem. Universe. 2020; 6(10):185. https://doi.org/10.3390/universe6100185
Chicago/Turabian StyleKhatsymovsky, Vladimir. 2020. "On the Discrete Version of the Schwarzschild Problem" Universe 6, no. 10: 185. https://doi.org/10.3390/universe6100185
APA StyleKhatsymovsky, V. (2020). On the Discrete Version of the Schwarzschild Problem. Universe, 6(10), 185. https://doi.org/10.3390/universe6100185