Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories
Abstract
:1. Introduction
2. Spacetime Symmetries and Post-Riemann Geometries
2.1. Fundamental Geometrical Structures of Spacetime
2.2. The Decomposition of the Affine Connection
2.2.1. Curvature
2.2.2. Torsion
2.2.3. Non-Metricity
2.3. A Brief Note on the Conformal and Metric Structures of Spacetime Geometry
3. Metric-Affine Formalism and Classical Spacetime
3.1. A Brief Outlook on Metric-Affine Gravity
3.2. Classical Spacetime Paradigms
3.2.1. Minkowski Spacetime—
3.2.2. (Pseudo)Riemann Geometry of GR—
3.2.3. Riemann-Cartan Geometry—
3.2.4. Riemann-Weyl Geometry—
3.2.5. Riemann-Cartan-Weyl Geometry—
3.2.6. Metric-Affine Geometry ()
4. Gauge Theories of Gravity
4.1. The Weyl-Yang-Mills Formalism
- Start with a field theory: of some matter fields .
- The matter Lagrangian is invariant under some internal symmetry group, described by a (semi-simple) Lie group with generators .
- Noether’s first theorem implies a conserved current: .
- The symmetries are described on each spacetime point introducing the compensating (gauge) field .
- This is a new field that couples minimally to matter and represents a new interaction.
- To preserve the symmetries this gauge potential A transforms in a suitable way allowing to construct a (gauge) covariant derivation .
- The Lagrangian includes this minimal coupling between the matter fields and the gauge potential .
- The gauge potential acts on the components of the matter fields defined with respect to some reference frame. Geometrically, it is the connection of the frame bundle (fiber bundle) related to the symmetry group.
- The conservation equation is generalized as .
4.2. The Gauge Approach to Gravity
4.3. The Gravity Yang-Mills Equations of Poincaré Gauge Theories of Gravity
4.3.1. Quadratic Poincaré Gauge Gravity
4.3.2. The Teleparallel Equivalent of GR
4.3.3. Einstein-Cartan-Sciama-Kibble Gravity
4.4. Quadratic Gauge Gravity Models in Metric-Affine Gravity
4.5. Probing Non-Riemannian Geometry with Test Matter
4.6. Metric-Affine Geometry and Lorentz Symmetry Breaking
4.7. A Word on the Formulations of GR
5. Discussion and Future Outlook
5.1. Spacetime Paradigms
5.2. Perspectives on Unification Methods in Fundamental Field Theories
5.3. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hees, A.; Do, T.; Ghez, A.M.; Martinez, G.D.; Naoz, S.; Becklin, E.E.; Boehle, A.; Chappell, S.; Chu, D.; Dehghanfar, A.; et al. Testing General Relativity with stellar orbits around the supermassive black hole in our Galactic center. Phys. Rev. Lett. 2017, 118, 211101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101, Erratum in 2018, 121, 129902. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar]
- Bull, P.; Akrami, Y.; Adamek, J.; Baker, T.; Bellini, E.; Beltran Jimenez, J.; Bentivegna, E.; Camera, S.; Clesse, S.; Davis, J.H.; et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Univ. 2016, 12, 56–99. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. A New Extension of Relativity Theory. Ann. Phys. 1919, 59, 101. [Google Scholar] [CrossRef]
- Weyl, H. Gravitation and the electron. Proc. Natl. Acad. Sci. USA 1929, 15, 323. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191. [Google Scholar] [CrossRef]
- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956, 101, 1597. [Google Scholar] [CrossRef]
- Sciama, D.W. The Physical structure of general relativity. Rev. Mod. Phys. 1964, 36, 463, Erratum in 1964, 36, 1103. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.G.; Burnett, J. Dark spinors with torsion in cosmology. Phys. Rev. D 2008, 78, 104001. [Google Scholar] [CrossRef] [Green Version]
- Poplawski, N.J. Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D 2012, 85, 107502. [Google Scholar] [CrossRef] [Green Version]
- Poplawski, N.J. Big bounce from spin and torsion. Gen. Rel. Grav. 2012, 44, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Vakili, B.; Jalalzadeh, S. Signature transition in Einstein-Cartan cosmology. Phys. Lett. B 2013, 726, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes and black universes without phantom fields in Einstein-Cartan theory. Phys. Rev. D 2016, 94, 124006. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Einstein–cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density. Astrophys. J. 2016, 829, 47. [Google Scholar] [CrossRef]
- Cembranos, J.A.R.; Gigante Valcarcel, J.; Maldonado Torralba, F.J. Singularities and n-dimensional black holes in torsion theories. JCAP 2017, 4, 021. [Google Scholar] [CrossRef]
- Cembranos, J.A.R.; Gigante Valcarcel, J. Extended Reissner–Nordström solutions sourced by dynamical torsion. Phys. Lett. B 2018, 779, 143–150. [Google Scholar] [CrossRef]
- Unger, G.; Popławski, N. Big bounce and closed universe from spin and torsion. Astrophys. J. 2019, 870, 78. [Google Scholar] [CrossRef]
- Blagojevic, M.; Hehl, F.W. Gauge Theories of Gravitation; Imperical Collage Press: Londin, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, M. Gravitation and Gauge Symmetries; Institute of Physics Publishing: Bristol, UK, 2002. [Google Scholar]
- Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Moscow, Russia, 2017. [Google Scholar]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Einstein–Cartan–Dirac gravity with U(1) symmetry breaking. Eur. Phys. J. C 2019, 79, 1023. [Google Scholar] [CrossRef]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Cosmological bounces, cyclic universes, and effective cosmological constant in Einstein-Cartan-Dirac-Maxwell theory. Phys. Rev. D 2020, 102, 083509. [Google Scholar] [CrossRef]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. The cosmological principle in theories with torsion: The case of Einstein-Cartan-Dirac-Maxwell gravity. JCAP 2020, 10, 057. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Hehl, F.W. General relativity as a special case of Poincaré gauge gravity. Phys. Rev. D 2020, 102, 044058. [Google Scholar] [CrossRef]
- Poplawski, N.J. Gravitation, electromagnetism and cosmological constant in purely affine gravity. Found. Phys. 2009, 39, 307–330. [Google Scholar] [CrossRef] [Green Version]
- Kittel, C. Kittel, Introduction to Solid State Physics, 8th ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N. Spacetime metric from local and linear electrodynamics: A New axiomatic scheme. Lect. Notes Phys. 2006, 702, 163–187. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N. How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature? Lect. Notes Phys. 2001, 562, 479–504. [Google Scholar]
- Lammerzahl, C.; Hehl, F.W. Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics. Phys. Rev. D 2004, 70, 105022. [Google Scholar] [CrossRef] [Green Version]
- Itin, Y.; Hehl, F.W. Is the Lorentz signature of the metric of space-time electromagnetic in origin? Ann. Phys. 2004, 312, 60–83. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field. Found. Phys. 2005, 35, 2007–2025. [Google Scholar] [CrossRef] [Green Version]
- Cabral, F.; Lobo, F.S.N. Electrodynamics and Spacetime Geometry: Foundations. Found. Phys. 2017, 47, 208–228. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S.D.; Sáez-Gómez, D. Conformal symmetry and accelerating cosmology in teleparallel gravity. Phys. Rev. D 2013, 88, 084042. [Google Scholar] [CrossRef] [Green Version]
- Lord, E.A.; Goswami, P. Gauging the conformal group. Pramana 1985, 25, 635–640. [Google Scholar] [CrossRef]
- MacDowell, S.W.; Mansouri, F. Unified Geometric Theory of Gravity and Supergravity. Phys. Rev. Lett. 1977, 38, 739. [Google Scholar] [CrossRef]
- Stelle, K.S.; West, P.C. Spontaneously Broken De Sitter Symmetry and the Gravitational Holonomy Group. Phys. Rev. D 1980, 21, 1466. [Google Scholar] [CrossRef]
- Berkovits, N. SuperPoincare invariant superstring field theory. Nucl. Phys. B 1995, 450, 90–102, Erratum in 1996, 459, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N. Poincaré gauge gravity: An overview. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1840005. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N. Gravitational waves in Poincaré gauge gravity theory. Phys. Rev. D 2017, 95, 084028. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M.; Cvetković, B. General Poincaré gauge theory: Hamiltonian structure and particle spectrum. Phys. Rev. D 2018, 98, 024014. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M.; Cvetković, B. Conformally flat black holes in Poincaré gauge theory. Phys. Rev. D 2016, 93, 044018. [Google Scholar] [CrossRef] [Green Version]
- Cembranos, J.A.R.; Valcarcel, J.G.; Maldonado Torralba, F.J. Non-Geodesic Incompleteness in Poincaré Gauge Gravity. Entropy 2019, 21, 280. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, E.; van Nieuwenhuizen, P. New Ghost Free Gravity Lagrangians with Propagating Torsion. Phys. Rev. D 1980, 21, 3269. [Google Scholar] [CrossRef]
- Kuhfuss, R.; Nitsch, J. Propagating Modes in Gauge Field Theories of Gravity. Gen. Rel. Grav. 1986, 18, 1207–1227. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General teleparallel quadratic gravity. Phys. Lett. B 2020, 805, 135422. [Google Scholar] [CrossRef]
- Hohmann, M.; Krššák, M.; Pfeifer, C.; Ualikhanova, U. Propagation of gravitational waves in teleparallel gravity theories. Phys. Rev. D 2018, 98, 124004. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Krššák, M. New classes of modified teleparallel gravity models. Phys. Lett. B 2017, 775, 37–43. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Levi Said, J. Post-Newtonian limit of Teleparallel Horndeski gravity. arXiv 2020, arXiv:2003.11554. [Google Scholar]
- de la Cruz-Dombriz, Á.; Farrugia, G.; Said, J.L.; Gómez, D.S.C. Cosmological bouncing solutions in extended teleparallel gravity theories. Phys. Rev. D 2018, 97, 104040. [Google Scholar] [CrossRef] [Green Version]
- Goy, C. Contact interactions at Hera, LEP and Tevatron. Eur. Phys. J. C 2004, 33, S776–S778. [Google Scholar] [CrossRef] [Green Version]
- H1 Collaboration. Search for new physics in e±q contact interactions at HERA. Phys. Lett. B 2003, 568, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.N. Integral Formalism for Gauge Fields. Phys. Rev. Lett. 1974, 33, 445. [Google Scholar] [CrossRef]
- Isham, C.J.; Salam, A.; Strathdee, J.A. F-dominance of gravity. Phys. Rev. D 1971, 3, 867. [Google Scholar] [CrossRef]
- Ne’eman, Y.; Sijacki, D. Chromogravity: QCD-induced diffeomorphisms. Int. J. Mod. Phys. A 1995, 10, 4399–4412. [Google Scholar] [CrossRef]
- Hehl, F.W.; Kerlick, G.D.; Von Der Heyde, P. On a New Metric Affine Theory of Gravitation. Phys. Lett. B 1976, 63, 446–448. [Google Scholar] [CrossRef]
- Lord, E.A. The Metric Affine Gravitational Theory as the Gauge Theory of the Affine Group. Phys. Lett. A 1978, 65, 1–4. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Progress in Metric Affine Gauge Theories of Gravity With Local Scale Invariance. Found. Phys. 1989, 19, 1075–1100. [Google Scholar] [CrossRef]
- Hehl, F.W.; Socorro, J. Gauge theory of gravity: Electrically charged solutions within the metric affine framework. Acta Phys. Polon. B 1998, 29, 1113. [Google Scholar]
- Ne’eman, Y.; Sijacki, D. Gravitational interaction of hadrons and leptons: Linear (multiplicity-free) bandor and nonlinear spinor unitary irreducible representations of SL(4,R). Proc. Natl. Acad. Sci. USA 1980, 77, 2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ne’eman, Y.; Sijacki, D. SL(4,R) World Spinors and Gravity. Phys. Lett. B 1985, 157, 275–279. [Google Scholar] [CrossRef]
- Ne’eman, Y. World Spinors in Riemannian Gravity. DOE-ER40200-014. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:17020101 (accessed on 13 November 2020).
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Sijacki, D. Affine particles and fields. Int. J. Geom. Meth. Mod. Phys. 2005, 2, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Macias, A. Metric affine gauge theory of gravity. 2. Exact solutions. Int. J. Mod. Phys. D 1999, 8, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Puetzfeld, D. Status of non-Riemannian cosmology. New Astron. Rev. 2005, 49, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Vlachynsky, E.J.; Esser, W.; Tresguerres, R.; Hehl, F.W. An Exact solution of the metric affine gauge theory with dilation, shear, and spin charges. Phys. Lett. A 1996, 220, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rumpf, H. Quasiclassical limit of the Dirac equation and the equivalence principle in the Riemann-Cartan geometry. NATO Sci. Ser. B 1980, 58, 93–104. [Google Scholar]
- Audretsch, J. Dirac Electron in Space-times With Torsion: Spinor Propagation, Spin Precession, and Nongeodesic Orbits. Phys. Rev. D 1981, 24, 1470–1477. [Google Scholar] [CrossRef]
- Ni, W.T. Probing the microscopic origin of gravity via precision polarization and spin experiments. Chin. Phys. Lett. 2005, 22, 33. [Google Scholar]
- Nitsch, J.; Hehl, F.W. Translational Gauge Theory of Gravity: Postnewtonian Approximation and Spin Precession. Phys. Lett. B 1980, 90, 98–102. [Google Scholar] [CrossRef]
- Lammerzahl, C. Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A 1997, 228, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Imprints from a Riemann-Cartan space-time on the energy levels of Dirac spinors. in press.
- Puetzfeld, D.; Obukhov, Y.N. Probing non-Riemannian spacetime geometry. Phys. Lett. A 2008, 372, 6711–6716. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Shirafuji, T. New General Relativity. Phys. Rev. D 1979, 19, 3524–3553. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 44048. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. JCAP 2018, 8, 039. [Google Scholar] [CrossRef] [Green Version]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D.; Petkou, A.C.; Tsagas, C.G. Torsion/non-metricity duality in f(R) gravity. Gen. Rel. Grav. 2019, 51, 66. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018, 98, 084043. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Hehl, F.W. Space-time metric from linear electrodynamics. Phys. Lett. B 1999, 458, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Crystal clear lessons on the microstructure of spacetime and modified gravity. Phys. Rev. D 2015, 91, 124001. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
1. | The symbol ⌟ stands for the interior product defined in differential topology and linear algebra, also called contraction operator, which gives a contraction between a p-form and a vector, resulting in a -form. |
2. | This group is actually related to diffeomorphisms (and to our freedom to choose any system of coordinates without altering the physical description, no matter the theory of the gravitational field we are working with), playing the role of gauge transformations of gravity [30]. |
3. | Accordingly, is a 2-form given by . Similarly, if v is a p form and w is a k-form, then is a -form with . The (gauge) covariant exterior derivative of a generic tensor valued p-form, denoted by , used in this paper is given by . |
4. | In d dimensions the Hodge star operator maps p-forms to -forms. In components we get . |
5. | The semi direct product implies that the generators of and (or ) do not commute. |
6. | These currents can be represented as 1-forms or as 3-forms. In fact, in the gauge approach to gravity they emerge naturally from Noether equations as 3-forms, being natural objects for integration over volumes. As 1-forms one can write and . This map between 3-form or 1-form representation is related to the fact that in d-dimension a k-form has independent components. In four dimensions both 3-forms and 1-forms have four independent components. |
7. | Here and . |
8. | This anecdotal notion was first coined by José Beltrán-Jiménez in one of his talks about the trinity of gravity [39]. |
9. | From a gauge theoretical perspective, the Lorentz group is not the symmetry group of Einstein’s gravity. It became clear some years later that the apropriate way to derive GR from a gauge principle is to consider it as a translational gauge theory of gravity. This class of theories lives on a Weitzenböck spacetime geometry with torsion and vanishing curvature and non-metricity. These geometries and its use in attempts for a unified classical field theory were worked out by Weitzenböck, Cartan and Einstein, for example, during the first period of the so-called teleparallel formulation gravity (up to 1938). A second period in the 60’s by Moller and others rekindled the interest in such theories which have more recently re-gained much attention, particularly via its extensions (see e.g., Reference [40]). |
10. | In the minimal coupling to fermions, only the axial vector torsion is involved. |
11. | Here is a 3-form and is the natural volume 4-form. |
12. | This is actually a torsion axial vector which couples to elementary particles. |
13. | For that, one needs non-planar detectors, 3-point correlation functions analysis and sufficient signal/noise ratio, besides a clear distinction from other possible GW sources with a similar power spectrum signature. |
14. | In cosmological applications the critical density can be written as , where and are Planck’s length and Compton wavelength, respectively. For electrons we get g/cm, corresponding to and around s after the Big Bang. |
Gravity Yang-Mills | Yang-Mills | Classical Mechanics | |
---|---|---|---|
Configuration | A | q | |
variables | |||
Generalized velocities | |||
Lagrange equations | |||
Conjugate momenta | |||
Constitutive relations | |||
(linear) | (linear) | ||
Canonical variables | |||
Hamiltonian | |||
Hamilton equations | |||
Gravity Yang-Mills | Yang-Mills | Quantum Mechanics | |
---|---|---|---|
Quantum operators | |||
Commutation relations |
Gravity Yang-Mills | Yang-Mills | |
---|---|---|
gauge | A | |
potentials | 1-forms | 1-form |
Field | ||
strengths | ||
Symmetry | ||
group | ||
canonical spin density, | ||
Noether currents | canonical energy-momentum density, | |
(elec. charge, isospin,...) | ||
(sources) | Hypermomentum, | |
canonical energy-momentum density, | ||
Excitations | ||
Field equations | ||
Bianchi identities | () | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories. Universe 2020, 6, 238. https://doi.org/10.3390/universe6120238
Cabral F, Lobo FSN, Rubiera-Garcia D. Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories. Universe. 2020; 6(12):238. https://doi.org/10.3390/universe6120238
Chicago/Turabian StyleCabral, Francisco, Francisco S. N. Lobo, and Diego Rubiera-Garcia. 2020. "Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories" Universe 6, no. 12: 238. https://doi.org/10.3390/universe6120238
APA StyleCabral, F., Lobo, F. S. N., & Rubiera-Garcia, D. (2020). Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories. Universe, 6(12), 238. https://doi.org/10.3390/universe6120238