A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches
Abstract
:1. Introduction
2. An Axion Model and Detection Framework
The Model
3. The Experiment
3.1. Detection Scheme
3.2. Noise Registry:
4. Preliminary Tests
5. Discussion and Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Seigar, M.S. The Dark Matter in the Universe. In Cold Dark Matter, Hot Dark Matter, and Their Alternatives; Morgan and Claypool: San Rafael, CA, USA, 2015. [Google Scholar]
- Marsh, D.J.E. Axion cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Visinelli, L.; Gondolo, P. Dark matter axions revisited. Phys. Rev. D 2009, 80, 035024. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Problem of Strong p and t Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Berezhiani, Z.G.; Khlopov, M.Y. Cosmology of spontaneously broken gauge family symmetry with axion solution of strong CP-problem. Z. Phys. C Part. Fields 1991, 49, 73. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in string theory. J. High Energ. Phys. 2016, 2016, 051. [Google Scholar] [CrossRef] [Green Version]
- Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J. String axiverse. Phys. Rev. D 2010, 81, 123530. [Google Scholar] [CrossRef] [Green Version]
- Visinelli, L.; Vagnozzi, C. Cosmological window onto the string axiverse and the supersymmetry breaking scale. Phys. Rev. D 2019, 99, 063517. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.G.; Rosenberg, L.J. Axions and other similar particles. Phys. Rev. D 2012, 86, 010001. [Google Scholar]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Cadamuro, D. Cosmological limits on axions and axion-like particles. arXiv 2012, arXiv:1210.3196. [Google Scholar]
- Kahn, Y.; Safdi, B.R.; Thaler, J. Broadband and resonant approaches to axion dark matter detection. Phys. Rev. Lett. 2016, 117, 141801. [Google Scholar] [CrossRef]
- Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P.; Tanner, D.B.; van Bibber, K. Resonantly enhanced axion-photon regeneration. Phys. Rev. Lett. 2007, 98, 172002. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P. Axion Cosmology. Lect. Notes Phys. 2008, 741, 19–50. [Google Scholar]
- Gondolo, P.; Visinelli, L. Axion cold dark matter in view of BICEP2 results. Phys. Rev. Lett. 2014, 113, 011802. [Google Scholar] [CrossRef] [Green Version]
- Van Bibber, K.; Dagdeviren, N.R.; Koonin, S.E.; Kerman, A.K.; Nelson, H.N. Proposed experiment to produce and detect light pseudoscalars. Phys. Rev. Lett. 1987, 59, 759. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; Van Bibber, K.; Hotz, M.; Rosenberg, L.J.; Rybka, G.; Hoskins, J.; Hwang, J.; et al. SQUID-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 2010, 104, 041301. [Google Scholar] [CrossRef] [Green Version]
- Majorovits, B. MADMAX: A new road to axion dark matter detection. J. Phys. Conf. Ser. 2017, 1342, 012098. [Google Scholar] [CrossRef]
- Redondo, J.; Ringwald, A. Light shining through walls. Contemp. Phys. 2011, 52, 211–236. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. [Planck Collaboration] Planck 2015 results-xiii. cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Huh, J.H.; Kim, J.E. Update of axion CDM energy density. J. Cosmol. Astropart. Phys. 2008, 2008, 005. [Google Scholar] [CrossRef]
- Di Luzio, L.; Mescia, F.; Nardi, E. Window for preferred axion models. Phys. Rev. D 2017, 96, 075003. [Google Scholar] [CrossRef] [Green Version]
- Read, J.I. The local dark matter density. J. Phys. G: Nucl. Part. Phys. 2014, 41, 063101. [Google Scholar] [CrossRef] [Green Version]
- Dicke, R.H. The measurement of thermal radiation at microwave frequencies. In Classics in Radio Astronomy; Springer: Dordrecht, The Netherlands, 1946; pp. 106–113. [Google Scholar]
- McAllister, B.T.; Flower, G.; Ivanov, E.N.; Goryachev, M.; Bourhill, J.; Tobar, M.E. The ORGAN experiment: An axion haloscope above 15 GHz. Phys. Dark Universe 2017, 18, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, M.H.S.; Shah, Z.H. An Experiment and Detection Scheme for Cavity-Based Light Cold Dark Matter Particle Searches. Adv. High Energy Phys. 2017, 2017, 6432354. [Google Scholar] [CrossRef]
- Roy, A.; Devoret, M. Introduction to parametric amplification of quantum signals with Josephson circuits. C.R. Phys. 2016, 17, 740–755. [Google Scholar] [CrossRef]
- Beltran, M.A.C. Development of a Josephson Parametric Amplifier for the Preparation and Detection of Nonclassical States of Microwave Fields. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2010. [Google Scholar]
- Yurke, B.; Kaminsky, P.G.; Miller, R.E.; Whittaker, E.A.; Smith, A.D.; Silver, A.H.; Simon, R.W. Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett. 1988, 60, 764–767. [Google Scholar] [CrossRef]
- Yurke, B.; Corruccini, L.R.; Kaminsky, P.G.; Rupp, L.W.; Smith, A.D.; Silver, A.H.; Simon, R.W.; Whittaker, E.A. Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A 1989, 39, 2519. [Google Scholar] [CrossRef]
- Macklin, C.; O’Brien, K.; Hover, D.; Schwartz, M.E.; Bolkhovsky, V.; Zhang, X.; Oliver, W.D.; Siddiqi, I. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 2015, 350, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Nag, B.R. Resonant Tunneling Diode. In Physics of Quantum Well Devices; Springer: Dordrecht, The Netherlands, 2002; pp. 188–201. [Google Scholar]
- Sollner, T.C.L.G.; Le, H.Q.; Brown, E.L. Microwave and Millimeter-Wave Resonant Tunneling Devices; Technical Report for Electronics and Electrical Engineering; NASA: Lexington, MA, USA, January 1988.
- Doychinov, V.; Steenson, D.P.; Patel, H. Resonant-Tunneling Diode Based Reflection Amplifier. In Proceedings of the 22nd European Workshop on Heterostructure Technology (HETECH), Glasgow, UK, 9–11 September 2013. [Google Scholar]
- Dubois, J.; Jullien, T.; Portier, F.; Roche, P.; Cavanna, A.; Jin, Y.; Glattli, D.C. Minimal-excitation states for electron quantum optics using levitons. Nature 2013, 502, 659–663. [Google Scholar] [CrossRef]
- Kasjoo, S.R. Novel Electronic Nanodevices Operating in the TeraHertz Region. Ph.D. Thesis, University of Manchester, Manchester, UK, 2012. [Google Scholar]
- Qi, H.; Guo, W.; Li, Y.; Zhang, X.; Li, X. InP-based RTD/HEMT monolithic integration. Trans. Tianjin Univ. 2010, 16, 267–269. [Google Scholar] [CrossRef]
- Reydellet, L.H.; Roche, P.; Glattli, D.C.; Etienne, B.; Jin, Y. Quantum partition noise of photon-created electron-hole pairs. Phys. Rev. Lett. 2003, 90, 176803. [Google Scholar] [CrossRef] [Green Version]
- O’Hare, C.A.J.; Green, A.M. Axion astronomy with microwave cavity experiments. Phys. Rev. D 2017, 95, 063017. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, A.; Dvali, G.; Majorovits, B.; Millar, A.; Raffelt, G.; Redondo, J.; Reimann, O.; Simon, F.; Steffen, F.; MADMAX Working Group. Dielectric haloscopes: A new way to detect axion dark matter. Phys. Rev. Lett. 2017, 118, 091801. [Google Scholar] [CrossRef] [Green Version]
- Battaglieri, M.; Belloni, A.; Chou, A.; Cushman, P.; Echenard, B.; Essig, R.; Estrada, J.; Feng, J.L.; Flaugher, B.; Fox, P.J.; et al. US cosmic visions: New ideas in dark matter 2017: Community report. arXiv 2017, arXiv:1707.04591. [Google Scholar]
- Kawasaki, M.; Saikawa, K.I.; Sekiguchi, T. Axion dark matter from topological defects. Phys. Rev. D 2015, 91, 065014. [Google Scholar] [CrossRef] [Green Version]
- Shellard, E.P.S.; Battye, R.A. Spectrum of radiation from axionic strings. Nucl. Phys. B 1999, 72, 88. [Google Scholar]
- Ballesteros, G.; Redondo, J.; Ringwald, A.; Tamarit, C. Unifying inflation with the axion, dark matter, baryogenesis, and the seesaw mechanism. Phys. Rev. Lett. 2017, 118, 071802. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, G.; Redondo, J.; Ringwald, A.; Tamarit, C. Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke. J. Cosmol. Astropart. Phys. 2017, 08, 001. [Google Scholar] [CrossRef] [Green Version]
- Borsanyi, S.; Fodor, Z.; Kampert, K.H.; Katz, S.D.; Kawanai, T.; Kovacs, T.G.; Ringwald, A. Lattice QCD for cosmology. Nature 2016, 539, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Sakharov, A.S.; Sokoloff, D.D. The nonlinear modulation of the density distribution in standard axionic CDM and its cosmological impact. Nucl. Phys. B 1999, 72, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Gorghetto, M.; Hardy, E.; Villadoro, G. Axions from strings: The attractive solution. J. High Energy Phys. 2018, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, M.; Foster, J.W.; Safdi, B.R. Early-Universe simulations of the cosmological axion. arXiv 2019, arXiv:1906.00967. [Google Scholar]
- Beck, C. Possible resonance effect of axionic dark matter in Josephson junctions. Phys. Rev. Lett. 2013, 111, 231801. [Google Scholar] [CrossRef] [Green Version]
- Freese, K.; Lisanti, M.; Savage, C. Annual modulation of dark matter: A review. arXiv 2012, arXiv:1209.3339. [Google Scholar]
- Everitt, C.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Al-Meshari, M. Gravity probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Iorio, L.; Lichtenegger, H.I.; Ruggiero, M.L.; Corda, C. Phenomenology of the Lense-Thirring effect in the solar system. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef] [Green Version]
- Renzetti, G. History of the attempts to measure orbital frame-dragging with artificial satellites. Cent. Eur. J. Phys. 2013, 11, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe 2019, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C.S.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C.C. Searching for galactic axions through magnetized media: The QUAX proposal. Phys. Dark Universe 2017, 15, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Devoret, M.H.; Schoelkopf, R.J. Superconducting circuits for quantum information: An outlook. Science 2013, 339, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Bergeal, N.; Schackert, F.; Metcalfe, M.; Vijay, R.; Manucharyan, V.E.; Frunzio, L.; Devoret, M.H. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 2010, 465, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Manucharyan, V.E.; Boaknin, E.; Metcalfe, M.; Vijay, R.; Siddiqi, I.; Devoret, M. Microwave bifurcation of a Josephson junction: Embedding-circuit requirements. Phys. Rev. B 2007, 76, 014524. [Google Scholar] [CrossRef] [Green Version]
- Hatridge, M.; Shankar, S.; Mirrahimi, M.; Schackert, F.; Geerlings, K.; Brecht, T.; Schoelkopf, R.J. Quantum back-action of an individual variable-strength measurement. Science 2013, 339, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Crescini, N.; Braggio, C.; Carugno, G.; Falferi, P.; Ortolan, A.; Ruoso, G. Improved constraints on monopole–dipole interaction mediated by pseudo-scalar bosons. Phys. Lett. B 2017, 773, 677–680. [Google Scholar] [CrossRef]
- Opremcak, A.; Pechenezhskiy, I.V.; Howington, C.; Christensen, B.G.; Beck, M.A.; Leonard, E.; Thorbeck, T. Measurement of a superconducting qubit with a microwave photon counter. Science 2018, 361, 1239–1242. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S. Optical Kerr effect in vacuum. Phys. Rev. A 2019, 100, 063831. [Google Scholar] [CrossRef] [Green Version]
- Braaten, E.; Zhang, H. Axion stars. arXiv 2018, arXiv:1810.11473. [Google Scholar]
- Ruffini, R.; Bonazzola, S. Systems of selfgravitating particles in general relativity and the concept of equation of state. Phys. Rev. 1969, 187, 1767–1783. [Google Scholar] [CrossRef] [Green Version]
- Colpi, M.; Shapiro, S.L.; Wasserman, I. Boson stars: Gravitational equilibria of self-interacting scalar fields. Phys. Rev. Lett. 1986, 57, 2485–2488. [Google Scholar] [CrossRef]
- Visinelli, L.; Baum, S.; Redondo, J.; Freese, K.; Wilczek, F. Dilute and dense axion stars. Phys. Lett. B 2018, 777, 64–72. [Google Scholar] [CrossRef]
Parameter | Value/Range |
---|---|
Mass (ma) | 22.5 ± 0.5 μeV to 112.5 ± 0.5 μeV |
Corresponding Resonant Frequency (Axion Compton Frequency) (νres/νc) | 5.4 ± 0.12 GHz to 27.0 ± 0.12 GHz |
Mean Axion Mass (〈m〉) | 101.25 + 0.5 μeV |
Axion Coupling/Decay Constant (fa) | 1011 to 1010 GeV |
Cosmological Axion Model | KSVZ/DFSZ |
Axion-γγ Coupling (gaγγ) | 10−15 to 10−13 GeV−1 |
Corresponding Compton Wavelength (λc) | 0.05 to 0.01 m |
Galactic Axion Velocity (va) | 2.3 × 105 ms−1 |
DM Density (Ωdm) | 0.3 0.1 GeV·cm3 |
Axion Density (Ωa) | 0.323 ± 0.1 GeV·cm3 |
Cavity Radius (r) | 2.1 cm to 4.2 mm |
Cavity Length (l) | 24 cm |
Cavity Mode (TMφρz) and Form Factor (Cφρz) | TM010~0.5 |
Cavity Quality Factor (Q0) | 0.75–1.0 × 105 |
Magnetic Field Intensity (B) | 8.0–10.0 T |
Component | Tphys (K) | TnK (%) | Gain (dB) |
---|---|---|---|
Cavity | 0.020 | 0.020 (0.2) | 0 |
JPA | 0.020 | 1.2 (4) | 15–25 |
RTD | 2.0–4.0 | 1.0 (1) | 5–10 |
cHEMT | 1.2–2.0 | 2 (5) | 28–38 |
HEMT | 290 | 65 (80) | 40 |
Cables | Various | 8 (10) | −10 |
Total | ~78 (~100) | 78–100 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhari, M.H.S. A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches. Universe 2020, 6, 28. https://doi.org/10.3390/universe6020028
Bukhari MHS. A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches. Universe. 2020; 6(2):28. https://doi.org/10.3390/universe6020028
Chicago/Turabian StyleBukhari, Masroor H. S. 2020. "A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches" Universe 6, no. 2: 28. https://doi.org/10.3390/universe6020028
APA StyleBukhari, M. H. S. (2020). A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches. Universe, 6(2), 28. https://doi.org/10.3390/universe6020028