Measuring Electromagnetic Fields in Rotating Frames of Reference
Abstract
:1. Introduction
2. The Electrostatic and Magnetic Fields Due to a Rotating Shell of Charge Observed in an Inertial Frame
3. Transformation of the Fields
3.1. Special Relativity
3.2. Schiff’s Method
3.3. The Method of Orthogonal Tetrads
4. Force on a Charge
4.1. Special Relativity
4.2. Schiff’s Method
4.3. The Method of Orthogonal Tetrads
5. Discussion
6. Conceptual Design of Experimental Tests
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schiff, L.I. A question in general relativity. Proc. Natl. Acad. Sci. USA 1939, 25, 391–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, W.M. Electrodynamics in Rotating System of Reference. Physica 1964, 30, 1160–1170. [Google Scholar] [CrossRef]
- Corum, J.F. Relativistic rotation and the anholonomic object. J. Math. Phys. 1977, 18, 770–776. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H.Freeman and Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Felice, F.D.; Clarke, C.J.S. Relativity on Curved Manifolds; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Crater, H.W. General covariance, Lorentz Covariance, the Lorentz force, and Maxwell equations. Am. J. Phys. 1994, 62, 923–931. [Google Scholar] [CrossRef]
- McDonald, K.T. Electrodynamics of Rotating Systems; Joseph Henry Laboratories, Princeton University: Princeton, NJ, USA, 2016. [Google Scholar]
- Mohandas, G.; Heinemann, T.; Pessah, M.E. Orbital stability in static axisymmetric fields. Celestial Mech. Dyn. Astron. 2019, 131, 3. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.Y.; Liu, J.Y.; Mahmood, W.; Zhao, Q. Scattering of electromagnetic wave by vortex flow. Phys. Lett. A 2017, 381, 1463–1469. [Google Scholar] [CrossRef]
- Phillips, A.C. Introduction to Quantum Mechanics; John Wiley and Sons: West Sussex, UK, 2003; p. 238. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, April 2004; p. 273. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, August 1998; p. 560. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, August 1998; p. 548. [Google Scholar]
- Modesitt, G.E. Maxwell’s Equations in a Rotating Reference Frame. Am. J. Phys 1970, 38, 1487–1489. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1999; p. 558. [Google Scholar]
- Miller, A.I. Albert Einstein’s Special Theory of Relativity; Addison-Wesley: Boston, MA, USA, 1981; p. 406, (In Translation of Einstein’s 1905 Paper). [Google Scholar]
- Corum, J.F. Relativistic Covariance and rotational electrodynamics. J. Math. Phys. 1980, 21, 2360–2364. [Google Scholar] [CrossRef]
- French, A.P. Special Relativity; Thomas Nelson and Sons Ltd: London, UK, 1975; p. 237. [Google Scholar]
- Marsh, J.S. Magnetic and Electric-fields of rotating charge distributions. Am. J. Phys. 1982, 50, 51–53. [Google Scholar] [CrossRef]
- Lorrain, P. Electrostatic charges in v x B fields: The Faraday disk and the rotating sphere. Eur. J. Phys. 1990, 11, 94–98. [Google Scholar] [CrossRef]
- Keene, D.W. Electromagnetic Gyroscope; Patent and Trademark Office: Washington, DC, USA, 1987. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Boston, MA, USA, 2010. [Google Scholar]
- Brady, R.M. A Superconducting Gyroscope with no moving Parts. IEEE Trans. Magn. 1981, 17, 861–862. [Google Scholar] [CrossRef]
- Brady, R.M.; Zimmerman, J.E. Experiments on a Superconducting Gyroscope with No Moving Parts. Ph.D. Dissertation, Trinity College, Cambridge, UK, 1982. [Google Scholar]
1 | We define what we mean by ’rotating systems’ in the context of each method in Section IIIC below. |
2 | Most authors note that the full quantum mechanical treatment of this problem requires the solution of the Dirac equation. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speake, C.C.; Ortolan, A. Measuring Electromagnetic Fields in Rotating Frames of Reference. Universe 2020, 6, 31. https://doi.org/10.3390/universe6020031
Speake CC, Ortolan A. Measuring Electromagnetic Fields in Rotating Frames of Reference. Universe. 2020; 6(2):31. https://doi.org/10.3390/universe6020031
Chicago/Turabian StyleSpeake, Clive C., and Antonello Ortolan. 2020. "Measuring Electromagnetic Fields in Rotating Frames of Reference" Universe 6, no. 2: 31. https://doi.org/10.3390/universe6020031
APA StyleSpeake, C. C., & Ortolan, A. (2020). Measuring Electromagnetic Fields in Rotating Frames of Reference. Universe, 6(2), 31. https://doi.org/10.3390/universe6020031