Photon Spheres, ISCOs, and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski Cores
Abstract
:1. Introduction
2. Geodesics and the Effective Potential
3. Photon Spheres
3.1. Existence of Photon Spheres
3.2. Stability versus Instability for Circular Photon Orbits
3.2.1. Perturbative Analysis (small a)
3.2.2. Non-Perturbative Analysis
3.3. Turning Points
4. Timelike Circular Orbits
4.1. Existence of Circular Timelike Orbits
4.2. Stability versus Instability for Circular Timelike Orbits
4.2.1. Perturbative Analysis (Small a)
4.2.2. Non-Perturbative Analysis
4.3. Intersection of ESCO and Photon Sphere
4.4. Explicit Result for the Angular Momentum
4.5. Summary
- For , we have an ESCO.This ESCO then subdivides as follows:
- -
- For , we have an ISCO.
- -
- For , we have an OSCO.
- For , the stability region is bounded by a stable photon orbit.
- The line bounds the stability and existence region for timelike circular orbits from below.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ESCO | Extremal stable circular orbit |
ISCO | Innermost stable circular orbit |
OSCO | Outermost stable circular orbit |
CMO | Compact massive object |
References
- Schwarzschild, K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte Der KÖniglich Preuss. Akad. Der Wiss. 1916, 7, 189. [Google Scholar]
- Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Der Phys. 1916, 50, 106. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Zur Gravitationstheorie. Ann. Der Phys. 1917, 54, 117. [Google Scholar] [CrossRef]
- Nordström, G. On the Energy of the Gravitational Field in Einstein’s Theory. Verhandl. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 1918, 24, 1201. [Google Scholar]
- Kerr, R. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Newmann, E.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys. 1965, 6, 918. [Google Scholar] [CrossRef]
- Kerr, R.; Schild, A. Republication of: A new class of vacuum solutions of the Einstein field equations. Gen. Rel. Grav. 2009, 41, 2485. [Google Scholar] [CrossRef]
- Visser, M. The Kerr spacetime: A brief introduction. arXiv 2007, arXiv:0706.0622. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. The Kerr Spacetime: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Unit-lapse versions of the Kerr spacetime. arXiv 2008, arXiv:2008.03817. [Google Scholar]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Painleve-Gullstrand form of the Lense-Thirring spacetime. arXiv 2006, arXiv:2006.14258. [Google Scholar]
- Vaidya, P.C. The External Field of a Radiating Star in General Relativity. Curr. Sci. (India) 1943, 12, 183. [Google Scholar] [CrossRef]
- Vaidya, P.C. The external field of a radiating star. Proc. Indian Acad. Sci. 1951, 33, 264. [Google Scholar] [CrossRef]
- Vaidya, P.C. Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Phys. Rev. 1951, 83, 10. [Google Scholar] [CrossRef]
- Calmet, X. Quantum Aspects of Black Holes; Springer Int. Pub.: Heidelberg, Germany, 2015. [Google Scholar]
- Calmet, X.; El-Menoufi, B.K. Quantum corrections to Schwarzschild black hole. Eur. Phys. J. C 2017, 77, 243. [Google Scholar] [CrossRef]
- Kazakov, D.I.; Solodukhin, S.N. On quantum deformation of the Schwarzschild solution. Nucl. Phys. B 1994, 429, 153. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F.; Khalil, M.M. Black hole with quantum potential. Nucl. Phys. B 2016, 909, 173. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, USSR, 9–13 September 1968. [Google Scholar]
- Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Information loss problem and a ‘black hole’ model with a closed apparent horizon. J. High Energy Phys. 2014, 2014, 49. [Google Scholar] [CrossRef] [Green Version]
- Ansoldi, S. Spherical black holes with regular center: A review of existing models including a recent realization with Gaussian sources. arXiv 2008, arXiv:0802.0330. [Google Scholar]
- Carballo-Rubio, R.; di Filippo, F.; Liberati, S.; Pacilio, C.; Visser, M. On the viability of regular black holes. J. High Energy Phys. 2018, 2018, 20. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching General Relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition? Phys. Rev. Lett. 1988, 61, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; Springer: New York, NY, USA, 1995. [Google Scholar]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Wormholes, Baby Universes and Causality. Phys. Rev. D 1990, 41, 1116. [Google Scholar] [CrossRef]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. From wormhole to time machine: Comments on Hawking’s chronology protection conjecture. Phys. Rev. D 1993, 47, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Poisson, E.; Visser, M. Thin shell wormholes: Linearization stability. Phys. Rev. D 1995, 52, 7318–7321. [Google Scholar] [CrossRef] [Green Version]
- Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117–3120. [Google Scholar] [CrossRef] [Green Version]
- Dadhich, N.; Kar, S.; Mukherji, S.; Visser, M. R=0 space-times and selfdual Lorentzian wormholes. Phys. Rev. D 2002, 65, 064004. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, A. The exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.; Visser, M. Black-bounce to traversable wormhole. JCAP 2019, 1902, 42. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.; Martín-Moruno, P.; Visser, M. Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quant. Grav. 2019, 36, 145007. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Simpson, A.; Visser, M. Dynamic thin-shell black-bounce traversable wormholes. Phys. Rev. D 2020, 101, 124035. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 2004, 101, 9545. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.O.; Mottola, E. Gravitational Condensate Stars: An Alternative to Black Holes. arXiv 2001, arXiv:0109035. [Google Scholar]
- Visser, M.; Wiltshire, D. Stable gravastars: An alternative to black holes? Class. Quant. Grav. 2004, 21, 1135. [Google Scholar] [CrossRef]
- Cattoën, C.; Faber, T.; Visser, M. Gravastars must have anisotropic pressures. Class. Quant. Grav. 2005, 22, 4189–4202. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. Stable dark energy stars. Class. Quant. Grav. 2006, 23, 1525. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Montelongo-García, N.; Lobo, F.S.N.; Visser, M. Generic thin-shell gravastars. JCAP 2012, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Martín-Moruno, P.; Montelongo-García, N.; Visser, M. Novel stability approach of thin-shell gravastars. arXiv 2015, arXiv:1512.07659. [Google Scholar]
- Cunha, P.V.; Berti, E.; Herdeiro, C.A.R. Light-Ring Stability for Ultracompact Objects. Phys. Rev. Lett. 2017, 119, 251102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, P.V.; Herdeiro, C.A.R. Stationary black holes and light rings. Phys. Rev. Lett. 2020, 124, 181101. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Rubio, R.; di Filippo, F.; Liberati, S.; Visser, M. Opening the Pandora’s box at the core of black holes. Class. Quant. Grav. 2020, 37, 145005. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Barceló, C.; Liberati, S.; Sonego, S. Small, dark, and heavy: But is it a black hole? PoS BHGRS 2008, 17. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Physical observability of horizons. Phys. Rev. D 2014, 90, 127502. [Google Scholar] [CrossRef] [Green Version]
- Carballo-Rubio, R.; di Filippo, F.; Liberati, S.; Visser, M. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 2018, 98, 124009. [Google Scholar] [CrossRef] [Green Version]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJL 2019, 875, L1. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. ApJL 2019, 875, L2. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. ApJL 2019, 875, L3. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. ApJL 2019, 875, L4. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. ApJL 2019, 875, L5. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. ApJL 2019, 875, L6. [Google Scholar] [CrossRef]
- Collection of Detection Papers from LIGO. Publications from the LIGO Scientific Collaboration and Virgo Collaboration. Available online: https://www.ligo.caltech.edu/page/detection-companion-papers (accessed on 20 December 2020).
- Current Gravitational Wave Observations. Available online: wikipedia.org/List_of_gravitational_wave_observations (accessed on 20 December 2020).
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 8. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Regular black holes with asymptotically Minkowski cores. Universe 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Berry, T.; Lobo, F.S.; Simpson, A.; Visser, M. Simpson and M. Visser, Thin-shell traversable wormhole crafted from a regular black hole with asymptotically Minkowski core. Phys. Rev. D 2020, 102, 064054. [Google Scholar] [CrossRef]
- Culetu, H. On a regular modified Schwarzschild spacetime. arXiv 2013, arXiv:1305.5964. [Google Scholar]
- Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855. [Google Scholar] [CrossRef] [Green Version]
- Culetu, H. Nonsingular black hole with a nonlinear electric source. Int. J. Mod. Phys. D 2015, 24, 1542001. [Google Scholar] [CrossRef]
- Culetu, H. Screening an extremal black hole with a thin shell of exotic matter. Phys. Dark Univ. 2016, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Junior, E.L.B.; Rodrigues, M.E.; Houndjo, M.J.S. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source. JCAP 2015, 1510, 60. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; Zanchin, V.T. Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2016, 94, 024062. [Google Scholar] [CrossRef] [Green Version]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 2020, 101, 24050. [Google Scholar] [CrossRef] [Green Version]
1. | As , we have , as expected for Schwarzschild spacetime. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berry, T.; Simpson, A.; Visser, M. Photon Spheres, ISCOs, and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski Cores. Universe 2021, 7, 2. https://doi.org/10.3390/universe7010002
Berry T, Simpson A, Visser M. Photon Spheres, ISCOs, and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski Cores. Universe. 2021; 7(1):2. https://doi.org/10.3390/universe7010002
Chicago/Turabian StyleBerry, Thomas, Alex Simpson, and Matt Visser. 2021. "Photon Spheres, ISCOs, and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski Cores" Universe 7, no. 1: 2. https://doi.org/10.3390/universe7010002
APA StyleBerry, T., Simpson, A., & Visser, M. (2021). Photon Spheres, ISCOs, and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski Cores. Universe, 7(1), 2. https://doi.org/10.3390/universe7010002