Gravitational Waves in Scalar–Tensor–Vector Gravity Theory
Abstract
:1. Introduction
2. The STVG Theory
3. Linearized Field Equations
4. The Relative Motion of Neighboring Particles
5. The Stress-Energy Pseudo-Tensor
6. Extension to Sources with Non-Negligible Self-Gravity
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170608: Observation of a 19-solar-mass binary black hole coalescence. Astrophys. J. 2017, 851, L35. [Google Scholar] [CrossRef]
- Belik, V.; Geisel, T.; Brockmann, D. Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X 2011, 1, 011001. [Google Scholar] [CrossRef] [Green Version]
- Eardley, D.M.; Lee, D.L.; Lightman, A.P. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. D 1973, 8, 3308. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Luongo, O. Connecting early and late universe by f(R) Gravity. Int. J. Mod. Phys. D 2014, 24, 1541002. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Gong, Y.; Hou, S.; Liu, Y. Polarizations of gravitational waves in f (R) gravity. Phys. Rev. D 2017, 95, 104034. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Gong, Y.; Liu, Y. Polarizations of gravitational waves in Horndeski theory. Eur. Phys. J. C 2018, 78, 378. [Google Scholar] [CrossRef]
- Gong, Y.; Hou, S. Gravitational Wave Polarizations in f(R) Gravity and Scalar-Tensor Theory. In Proceedings of the 13th International Conference on Gravitation, Astrophysics and Cosmology and 15th Italian-Korean Symposium on Relativistic Astrophysics (IK15), Seoul, Korea, 3–7 July 2017; Volume 168, p. 01003. [Google Scholar]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M.D. Stability of spherically symmetric solutions in modified theories of gravity. Phys. Rev. D 2007, 76, 064002. [Google Scholar] [CrossRef] [Green Version]
- Chatziioannou, K.; Yunes, N.; Cornish, N. Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content. Phys. Rev. D 2012, 86, 022004, Erratum: Phys. Rev. D 2017, 95, 129901. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. First search for nontensorial gravitational waves from known pulsars. Phys. Rev. Lett. 2018, 120, 031104. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background. Phys. Rev. Lett. 2018, 120, 201102. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Gong, Y. Gravitational waves in Einstein-aether theory and generalized TeVeS theory after GW170817. Universe 2018, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hou, S.; Liang, D.; Papantonopoulos, E. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817. Phys. Rev. D 2018, 97, 084040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, J.; Liu, T.; Zhao, W.; Wang, A. Testing Brans-Dicke gravity using the Einstein telescope. Phys. Rev. D 2017, 95, 124008. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, X.; Zhao, W.; Lin, K.; Zhang, C.; Zhang, S.; Zhao, X.; Zhu, T.; Wang, A. Waveforms of compact binary inspiral gravitational radiation in screened modified gravity. Phys. Rev. D 2018, 98, 083023. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, X.; Wang, A.; Wang, B.; Yagi, K.; Yunes, N.; Zhao, W.; Zhu, T. Gravitational waves from the quasicircular inspiral of compact binaries in Einstein-aether theory. Phys. Rev. D 2020, 101, 044002. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.; Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 1962, 3, 566–578. [Google Scholar] [CrossRef]
- Nishizawa, A.; Taruya, A.; Hayama, K.; Kawamura, S.; Sakagami, M.A. Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D 2009, 79, 082002. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.E.; Miranda, O.D.; de Araujo, J.C. Probing the f (R) formalism through gravitational wave polarizations. Phys. Lett. B 2009, 679, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.S.; Moon, T. Massive gravitational waves in Chern-Simons modified gravity. J. Cosmol. Astropart. Phys. 2014, 2014, 043. [Google Scholar] [CrossRef] [Green Version]
- Wagle, P.; Saffer, A.; Yunes, N. Polarization modes of gravitational waves in quadratic gravity. Phys. Rev. D 2019, 100, 124007. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.E.; Hughes, S.A. The basics of gravitational wave theory. New J. Phys. 2005, 7, 204. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: San Francisco, CA, USA, 1973. [Google Scholar]
- Swaminarayan, N.S.; Safko, J.L. A coordinate-free derivation of a generalized geodesic deviation equation. J. Math. Phys. 1983, 24, 883–885. [Google Scholar] [CrossRef]
- Hou, S.; Gong, Y. Strong equivalence principle and gravitational wave polarizations in Horndeski theory. Eur. Phys. J. C 2019, 79, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Isaacson, R.A. Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys. Rev. 1968, 166, 1263. [Google Scholar] [CrossRef]
- Isaacson, R.A. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 1968, 166, 1272. [Google Scholar] [CrossRef]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifschitz, E.M. The Classical Theory of Fields Volume 2 of Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Stein, L.C.; Yunes, N. Effective gravitational wave stress-energy tensor in alternative theories of gravity. Phys. Rev. D 2011, 83, 064038. [Google Scholar] [CrossRef] [Green Version]
- Saffer, A.; Yunes, N.; Yagi, K. The gravitational wave stress–energy (pseudo)-tensor in modified gravity. Class. Quantum Gravity 2018, 35, 055011. [Google Scholar] [CrossRef] [Green Version]
- Payne, P.N. Smarr’s zero-frequency-limit calculation. Phys. Rev. D 1983, 28, 1894. [Google Scholar] [CrossRef]
- Blanchet, L.; Damour, T. Hereditary effects in gravitational radiation. Phys. Rev. D 1992, 46, 4304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulou, D. Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 1991, 67, 1486. [Google Scholar] [CrossRef] [PubMed]
- Thorne, K.S. Gravitational-wave bursts with memory: The Christodoulou effect. Phys. Rev. D 1992, 45, 520. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.S.; Kovács, S.J. The generation of gravitational waves. I-Weak-field sources. Astrophys. J. 1975, 200, 245–262. [Google Scholar] [CrossRef]
- Nutku, Y. The energy-momentum complex in the Brans-Dicke theory. Astrophys. J. 1969, 158, 991. [Google Scholar] [CrossRef]
- Moffat, J.W. Scalar–tensor–vector gravity theory. J. Cosmol. Astropart. Phys. 2006, 2006, 004. [Google Scholar] [CrossRef]
- Moffat, J.W. Scalar and Vector Field Constraints, Deflection of Light and Lensing in Modified Gravity (MOG). arXiv 2014, arXiv:1410.2464. [Google Scholar]
- Moffat, J.W.; Rahvar, S. The MOG weak field approximation and observational test of galaxy rotation curves. Mon. Not. R. Astron. Soc. 2013, 436, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W.; Toth, V.T. Rotational velocity curves in the Milky Way as a test of modified gravity. Phys. Rev. D 2015, 91, 043004. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W.; Rahvar, S. The MOG weak field approximation–II. Observational test of Chandra X-ray clusters. Mon. Not. R. Astron. Soc. 2014, 441, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Brownstein, J.R.; Moffat, J.W. The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter. Mon. Not. R. Astron. Soc. 2007, 382, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Structure Growth and the CMB in Modified Gravity (MOG). arXiv 2014, arXiv:1409.0853. [Google Scholar]
- Moffat, J.W. LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG). Phys. Lett. B 2016, 763, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Moffat, J.W.; Toth, V.T. Modified gravity (MOG), the speed of gravitational radiation and the event GW170817/GRB170817A. Phys. Lett. B 2018, 780, 300–302. [Google Scholar] [CrossRef]
- Moffat, J.W. Modified Gravity (MOG) and Heavy Neutron Star in Mass Gap. arXiv 2020, arXiv:2008.04404. [Google Scholar]
- Moffat, J.W. Modified Gravitation Theory (MOG) and the aLIGO GW190521 Gravitational Wave Event. arXiv 2020, arXiv:2009.04360. [Google Scholar]
- Hellings, R.W.; Downs, G.S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 1983, 265, L39–L42. [Google Scholar] [CrossRef]
- Vergel, D.G.; Villaseñor, E.J. Quantum unitary evolution of linearly polarized and Gowdy models coupled to massless scalar fields. Class. Quantum Gravity 2008, 25, 085002. [Google Scholar] [CrossRef] [Green Version]
- Roshan, M. Test particle motion in modified gravity theories. Phys. Rev. D 2013, 87, 044005. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Gong, Y.; Hou, S. The Polarizations of Gravitational Waves. Universe 2018, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Du, S.M.; Nishizawa, A. Gravitational wave memory: A new approach to study modified gravity. Phys. Rev. D 2016, 94, 104063. [Google Scholar] [CrossRef] [Green Version]
- Martin-Garcia, J.M. xAct: Efficient Tensor Computer Algebra for Mathematica. Available online: http://xact.es/ (accessed on 5 January 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Qian, W.-L.; Gong, Y.; Wang, B. Gravitational Waves in Scalar–Tensor–Vector Gravity Theory. Universe 2021, 7, 9. https://doi.org/10.3390/universe7010009
Liu Y, Qian W-L, Gong Y, Wang B. Gravitational Waves in Scalar–Tensor–Vector Gravity Theory. Universe. 2021; 7(1):9. https://doi.org/10.3390/universe7010009
Chicago/Turabian StyleLiu, Yunqi, Wei-Liang Qian, Yungui Gong, and Bin Wang. 2021. "Gravitational Waves in Scalar–Tensor–Vector Gravity Theory" Universe 7, no. 1: 9. https://doi.org/10.3390/universe7010009
APA StyleLiu, Y., Qian, W. -L., Gong, Y., & Wang, B. (2021). Gravitational Waves in Scalar–Tensor–Vector Gravity Theory. Universe, 7(1), 9. https://doi.org/10.3390/universe7010009