Multimessenger Astronomy with Neutrinos
Abstract
:1. Introduction
2. Multimessenger Astronomy Milestones
3. Recent Results
4. Future Prospects and Challenges
4.1. Future Instruments and Instrument Upgrades
4.2. Alert Systems and Strategies
4.3. Future Challenges
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GW | Gravitational Wave |
CR | Cosmic Ray |
GRB | Gamma-Ray Burst |
TDE | Tidal Disruption Event |
PMT | Photomultipliers tubes |
1 | Gold (bronze) alerts are neutrino events with >50% (>30%) probability of being from astrophysical origin. |
References
- Zyla, P.A. et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 8, 083C01. [Google Scholar]
- Davis, R., Jr.; Harmer, D.S.; Hoffman, K.C. Search for neutrinos from the sun. Phys. Rev. Lett. 1968, 20, 1205. [Google Scholar] [CrossRef]
- Hirata, K.S.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN 1987a. Phys. Rev. D 1988, 38, 448. [Google Scholar] [CrossRef]
- Haines, T. et al. [IMB Collaboration] Neutrinos from SN1987a in the IMB detector. Nucl. Instrum. Meth. A 1988, 264, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, E.; Alexeyeva, L.N.; Krivosheina, I.V.; Volchenko, V.I. Detection of the neutrino signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope. Phys. Lett. B 1988, 205, 209–214. [Google Scholar] [CrossRef]
- Babson, J. et al. [DUMAND Collaboration] Cosmic Ray Muons in the Deep Ocean. Phys. Rev. D 1990, 42, 3613. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.G. et al. [IceCube Collaboration] Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P. et al. LIGO Scientific Collaboration and Virgo Collaboration] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT] Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Metzger, B.D. Kilonovae. Living Rev. Relativ. 2017, 20, 3. [Google Scholar] [CrossRef]
- Li-Xin, L.; Paczyński, B. Transient Events from Neutron Star Mergers. Astrophys. J. 1998, 507, L59–L62. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satalecka, K. et al. [MAGIC, ATCA, OVRO and TELAMON Collaborations] Multi-epoch monitoring of TXS 0506+056 with MAGIC and MWL partners. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany,, 12–23 July 2021; Volume 395, p. 875. [Google Scholar]
- Illuminati, G. et al. [ANTARES Collaboration] Searches for point-like sources of cosmic neutrinos with 13 years of ANTARES data. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 1161. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; et al. A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration. Astrophys. J. 2018, 864, 84. [Google Scholar] [CrossRef]
- Xue, R.; Liu, R.Y.; Petropoulou, M.; Oikonomou, F.; Wang, Z.R.; Wang, K.; Wang, X.Y. A Two-zone Model for Blazar Emission: Implications for TXS 0506+056 and the Neutrino Event IceCube-170922A. Astrophys. J. 2019, 886, 23. [Google Scholar] [CrossRef]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Plavin, A.; Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophys. J. 2021, 911, 48. [Google Scholar] [CrossRef]
- Illuminati, G. et al. [ANTARES Collaboration] ANTARES search for neutrino flares from the direction of radio-bright blazars. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 972. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Realtime Alert System. Astropart. Phys. 2017, 92, 30. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, X.; Garrappa, S.; Gao, S.; Paliya, V.S.; Franckowiak, A.; Winter, W. Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106. Astrophys. J. 2021, 912, 54. [Google Scholar] [CrossRef]
- Paliya, V.S.; Böttcher, M.; Olmo-García, A.; Domínguez, A.; de Paz, A.G.; Franckowiak, A.; Garrappa, S.; Stein, R. Multifrequency Observations of the Candidate Neutrino-emitting Blazar BZB J0955+3551. Astrophys. J. 2020, 902, 29. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Oikonomou, F.; Glauch, T.; Paiano, S.; Resconi, E. 3HSP J095507.9+355101: A flaring extreme blazar coincident in space and time with IceCube-200107A. Astron. Astrophys. 2020, 640, L4. [Google Scholar] [CrossRef]
- Ajello, M.; Angioni, R.; Axelsson, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 892, 105. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux. Astrophys. J. 2017, 835, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Liu, R.Y.; Dai, Z.G.; Cheng, K.S. Probing the tidal disruption flares of massive black holes with high-energy neutrinos. Phys. Rev. D 2011, 84, 081301. [Google Scholar] [CrossRef] [Green Version]
- Bell, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 908, 510–518. [Google Scholar] [CrossRef]
- Albert, A. et al. [ANTARES Collaboration] Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. Astrophys. J. 2021, 920, 50. [Google Scholar] [CrossRef]
- Allakhverdyan, V.A. et al. [GVD-Baikal Collaboration] Multi-messenger and real-time astrophysics with the Baikal-GVD telescope. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 946. [Google Scholar]
- Stein, R. Tidal disruption event coincident with a high-energy neutrino. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 009. [Google Scholar]
- Waxman, E.; Bahcall, J.N. High-energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 1997, 78, 2292. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for high-energy neutrinos from bright GRBs with ANTARES. Mon. Not. Roy. Astron. Soc. 2017, 469, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory. Astrophys. J. 2016, 824, 115. [Google Scholar] [CrossRef] [Green Version]
- Bartos, I.; Veske, D.; Kowalski, M.; Marka, Z.; Marka, S. The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux. arXiv 2021, arXiv:2105.03792. [Google Scholar]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G. 2016, 43, 084001. [Google Scholar] [CrossRef]
- Belolaptikov, I.; Dzhilkibaev, Z. [GVD-Baikal Collaboration]. Neutrino Telescope in Lake Baikal: Present and Nearest Future. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 002. [Google Scholar]
- Kowalski, M.et al. [IceCube Collaboration] IceCube: The Window to the Extreme Universe. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 022. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G. 2021, 48, 060501. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] The IceCube Neutrino Observatory—Contributions to the 36th International Cosmic Ray Conference (ICRC2019). arXiv 2019, arXiv:1907.11699. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. PINGU: A Vision for Neutrino and Particle Physics at the South Pole. J. Phys. G. 2017, 44, 054006. [Google Scholar] [CrossRef] [Green Version]
- Resconi, E. The Pacific Ocean Neutrino Experiment at Ocean Networks Canada. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 024. [Google Scholar]
- Abe, K. et al. [Hyper-Kamiokande Proto-Collaboration] Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Alonso Monsalve, S.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE. J. Instrum. 2020, 15, T08008. [Google Scholar] [CrossRef]
- Zanin, R.; Abdalla, H.; Abe, H.; Abe, S.; Abusleme, A.; Acero, F.; Acharyya, A.; Acin Portella, V.; Ackley, K.; Adam, R.; et al. CTA—The World’s largest ground-based gamma-ray observatory. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 005. [Google Scholar]
- Cao, Z. Highlights of LHAASO science results. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 011. [Google Scholar]
- Akutsu, T. et al. [KAGRA collaboration] KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 2019, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [The Pierre Auger Collaboration] The Pierre Auger Observatory Upgrade—Preliminary Design Report. arXiv 2016, arXiv:1604.03637. [Google Scholar]
- The Gamma-ray Coordinates Network. Available online: https://gcn.gsfc.nasa.gov/ (accessed on 30 September 2021).
- The Astronomer’s Telegram. Available online: https://www.astronomerstelegram.org/ (accessed on 30 September 2021).
- Reichherzer, P.; Schüssler, F.; Lefranc, V.; Yusafzai, A.; Alkan, A.K.; Ashkar, H.; Becker Tjus, J. Astro-COLIBRI—The COincidence LIBrary for Real-time Inquiry for Multimessenger Astrophysics. Astrophys. J. Supp. 2021, 256, 5. [Google Scholar] [CrossRef]
- Adrián-Martínez, S. et al. [ANTARES, TAROT, ROTSE, Swift, Zadko Collaborations] Optical and X-ray early follow-up of ANTARES neutrino alerts. J. Cosmol. Astropart. Phys. 2016, 2016, 062. [Google Scholar] [CrossRef] [Green Version]
- Dornic, D.; Ageron, M.; Bertin, V.; Brunner, J.; Coleiro, A.; Schüssler, F.; Turpin, D.; Vallage, B. Ten years of multi-wavelength follow-up observations of ANTARES neutrino alerts. In Proceedings of the International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 871. [Google Scholar]
- Solares, H.A.A.; Coutu, S.; Cowen, D.F.; DeLaunay, J.J.; Fox, D.B.; Keivani, A.; Mostafá, M.; Murase, K.; Oikonomou, F.; Seglar-Arroyo, M.; et al. The Astrophysical Multimessenger Observatory Network (AMON): Performance and science program. Astropart. Phys. 2020, 144, 68–76. [Google Scholar] [CrossRef]
- Hugo, A. et al. [the AMON Group, the IceCube Collaboration, the HAWC Collaboration, the ANTARES Collaboration] Multimessenger NuEM Alerts with AMON. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 958. [Google Scholar]
- Albert, A. et al. [IceCube Collaboration] ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophys. J. 2020, 892, 92. [Google Scholar] [CrossRef]
- Albert, A. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 2017, 850, L35. [Google Scholar] [CrossRef]
- Avrorin, A.D. et al. [GVD-Baikal Collaboration] The Baikal-GVD neutrino telescope: First results of multi-messenger studies—Contributions to the 36th International Cosmic Ray Conference (ICRC2019). arXiv 2019, arXiv:1908.05450. [Google Scholar]
- Kimura, S.S.; Murase, K.; Bartos, I.; Ioka, K.; Heng, I.S.; Mészáros, P. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 2018, 98, 043020. [Google Scholar] [CrossRef] [Green Version]
- González, J.P. et al. [KM3NeT Collaboration] KM3NeT/ARCA sensitivity to transient neutrino sources. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 1126. [Google Scholar]
- Oikonomou, F. High-energy neutrino emission from blazars. In Proceedings of the International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 030. [Google Scholar]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R. et al. [IceCube Collaboration] The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2021, 104, 022002. [Google Scholar] [CrossRef]
- Fenu, F. et al. [Pierre Auger Collaboration] The cosmic ray energy spectrum measured using the Pierre Auger Observatory. In Proceedings of the International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 486. [Google Scholar]
- Roth, M.A.; Krumholz, M.R.; Crocker, R.M.; Celli, S. The diffuse γ-ray background is dominated by star-forming galaxies. Nature 2021, 597, 341–344. [Google Scholar] [CrossRef]
- Aab, A. et al. [The Pierre Auger Collaboration] An Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources. Astrophys. J. Lett. 2018, 853, L29. [Google Scholar] [CrossRef]
- Lunardini, C.; Vance, G.S.; Emig, K.L.; Windhorst, R.A. Are starburst galaxies a common source of high energy neutrinos and cosmic rays? J. Cosmol. Astropart. Phys. 2019, 2019, 073. [Google Scholar] [CrossRef] [Green Version]
- Amenomori, M. et al. [Tibet ASγ Collaboration] First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies. Phys. Rev. Lett. 2021, 126, 14–141101. [Google Scholar] [CrossRef]
- Fang, K.; Murase, K. Multi-messenger Implications of Sub-PeV Diffuse Galactic Gamma-Ray Emission. Astrophys. J. 2021, 919, 93. [Google Scholar] [CrossRef]
- Abeysekara, A.U. et al. [HAWC Collaboration] Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC. Phys. Rev. Lett. 2020, 124, 021102. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Aharonian, F.A.; An, Q.; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef]
- Dzhappuev, D.D. et al. [Carpet–3 Group] Observation of Photons above 300 TeV Associated with a High-energy Neutrino from the Cygnus Region. Astrophys. J. Lett. 2021, 916, L22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salesa Greus, F.; Sánchez Losa, A. Multimessenger Astronomy with Neutrinos. Universe 2021, 7, 397. https://doi.org/10.3390/universe7110397
Salesa Greus F, Sánchez Losa A. Multimessenger Astronomy with Neutrinos. Universe. 2021; 7(11):397. https://doi.org/10.3390/universe7110397
Chicago/Turabian StyleSalesa Greus, Francisco, and Agustín Sánchez Losa. 2021. "Multimessenger Astronomy with Neutrinos" Universe 7, no. 11: 397. https://doi.org/10.3390/universe7110397
APA StyleSalesa Greus, F., & Sánchez Losa, A. (2021). Multimessenger Astronomy with Neutrinos. Universe, 7(11), 397. https://doi.org/10.3390/universe7110397