Astroparticle Physics with Compact Objects
Abstract
:1. Introduction
2. Compact Objects and Dark Matter
2.1. Capture of DM By Stars
2.1.1. Capture during Star Lifetime
2.1.2. Capture at Star Formation
2.1.3. Thermalization of Captured DM
2.2. Signatures of DM in Compact Stars
2.2.1. Annihilation and Heating
2.2.2. BH Formation and Star Destruction
3. Axions and Neutron Star Magnetospheres
3.1. Theory
3.2. Hot Axions
3.3. Compact Object as Haloscopes
3.4. Axions and FRBs
4. Axions and Cooling of White Dwarfs
5. Conclusions
- deep surveys can identify dim old sources related to isolated NSs heated by DM particles’ annihilation;
- dedicated searches for radio emission related to Primakoff processes can result in its detection;
- finally, detailed studies (including polarization) of surface X-ray and optical emission of cooling NSs can also demonstrate effects related to the existence of axions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | Axion-like particle |
BH | black hole |
BEC | Bose–Einstein condensate |
CP | Charge parity |
DFSZ | Dine–Fischler–Srednicki–Zhitnitsky model |
DM | Dark matter |
EM | Electro-magnetic |
FRB | Fast radio burst |
IFMR | Initial to final mass ratio |
KSVZ | Kim–Shifman–Vainshtein–Zakharov model |
MWD | Magnetic white dwarf |
NS | Neutron star |
NFW | Navarro, Frenk and White model |
QCD | Quantum chromodynamics |
QED | Quantum electrodymanics |
SM | Standard model |
SMBH | Supermassive black hole |
WD | White dwarf |
WIMP | Weakly interacting massive particle |
XDINS | X-ray dim isolated neutron stars |
1 | If the main charge carriers are not electrons, then the should be substituted for . |
2 | This model-dependent parameter links electron coupling constant to axion mass in the DFSZ model: and is usually set equal to unity. |
References
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure; Astrophysics and Space Science Library; Springer: New York, NY, USA, 2007; Volume 326. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Pethick, C.J. Neutron star cooling. Annu. Rev. Astron. Astrophys. 2004, 42, 169–210. [Google Scholar] [CrossRef]
- Isern, J.; Hernanz, M.; Garcia-Berro, E. Axion Cooling of White Dwarfs. Astrophys. J. 1992, 392, L23. [Google Scholar] [CrossRef] [Green Version]
- Sedrakian, A. Axion cooling of neutron stars. Phys. Rev. D 2016, 93, 065044. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R.; Zane, S.; Watts, A.L. Magnetars: The physics behind observations. A review. Rep. Prog. Phys. 2015, 78, 116901. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, L.; de Martino, D.; Gänsicke, B.T. Magnetic White Dwarfs. Space Sci. Rev. 2015, 191, 111–169. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.G. Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles; The University of Chicago Press: Chicago, IL, USA; London, UK, 1996. [Google Scholar]
- Colpi, M.; Shapiro, S.L.; Wasserman, I. Boson stars: Gravitational equilibria of self-interacting scalar fields. Phys. Rev. Lett. 1986, 57, 2485–2488. [Google Scholar] [CrossRef]
- Lee, T.D.; Pang, Y. Fermion soliton stars and black holes. Phys. Rev. D 1987, 35, 3678–3694. [Google Scholar] [CrossRef] [PubMed]
- Brandt, B.B.; Endrődi, G.; Fraga, E.S.; Hippert, M.; Schaffner-Bielich, J.; Schmalzbauer, S. New class of compact stars: Pion stars. Phys. Rev. D 2018, 98, 094510. [Google Scholar] [CrossRef] [Green Version]
- Brayeur, L.; Tinyakov, P. Enhancement of dark matter capture by neutron stars in binary systems. Phys. Rev. Lett. 2012, 109, 061301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouvaris, C. WIMP Annihilation and Cooling of Neutron Stars. Phys. Rev. D 2008, 77, 023006. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Spergel, D.N. Capture by the sun of a galactic population of weakly interacting massive particles. Astrophys. J. 1985, 296, 679–684. [Google Scholar] [CrossRef]
- Gould, A. WIMP Distribution in and Evaporation From the Sun. Astrophys. J. 1987, 321, 560. [Google Scholar] [CrossRef] [Green Version]
- Gould, A. Direct and Indirect Capture of Wimps by the Earth. Astrophys. J. 1988, 328, 919–939. [Google Scholar] [CrossRef]
- Collaboration, X.E.N.O.N.; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, X.E.N.O.N.; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Antochi, V.C.; Arneodo, F.; et al. Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T. Phys. Rev. Lett. 2019, 122, 141301. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 251302. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Cui, X.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. PandaX-II Constraints on Spin-Dependent WIMP-Nucleon Effective Interactions. Phys. Lett. B 2019, 792, 193–198. [Google Scholar] [CrossRef]
- Amole, C.; Ardid, M.; Arnquist, I.J.; Asner, D.M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C.J.; et al. Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, J.F.; Bramante, J.; Goodman, A.; Kopp, J.; Opferkuch, T. Dark Matter, Destroyer of Worlds: Neutrino, Thermal, and Existential Signatures from Black Holes in the Sun and Earth. J. Cosmol. Astropart. Phys. 2021, 04, 026. [Google Scholar] [CrossRef]
- Bell, N.F.; Busoni, G.; Robles, S.; Virgato, M. Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets. J. Cosmol. Astropart. Phys. 2021, 03, 086. [Google Scholar] [CrossRef]
- Bell, N.F.; Busoni, G.; Robles, S.; Virgato, M. Improved Treatment of Dark Matter Capture in Neutron Stars. J. Cosmol. Astropart. Phys. 2020, 09, 028. [Google Scholar] [CrossRef]
- Güver, T.; Erkoca, A.E.; Hall Reno, M.; Sarcevic, I. On the capture of dark matter by neutron stars. J. Cosmol. Astropart. Phys. 2014, 05, 013. [Google Scholar] [CrossRef] [Green Version]
- Capela, F.; Pshirkov, M.; Tinyakov, P. Constraints on Primordial Black Holes as Dark Matter Candidates from Star Formation. Phys. Rev. D 2013, 87, 023507. [Google Scholar] [CrossRef] [Green Version]
- Capela, F.; Pshirkov, M.; Tinyakov, P. Adiabatic contraction revisited: Implications for primordial black holes. Phys. Rev. D 2014, 90, 083507. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. Constraining Asymmetric Dark Matter through observations of compact stars. Phys. Rev. D 2011, 83, 083512. [Google Scholar] [CrossRef] [Green Version]
- Goldman, I.; Nussinov, S. Weakly Interacting Massive Particles and Neutron Stars. Phys. Rev. D 1989, 40, 3221–3230. [Google Scholar] [CrossRef]
- Bertoni, B.; Nelson, A.E.; Reddy, S. Dark Matter Thermalization in Neutron Stars. Phys. Rev. D 2013, 88, 123505. [Google Scholar] [CrossRef] [Green Version]
- Cermeño, M.; Pérez-García, M.A.; Silk, J. Fermionic Light Dark Matter Particles and the New Physics of Neutron Stars. Publ. Astron. Soc. Austral. 2017, 34, e043. [Google Scholar] [CrossRef] [Green Version]
- Garani, R.; Genolini, Y.; Hambye, T. New Analysis of Neutron Star Constraints on Asymmetric Dark Matter. J. Cosmol. Astropart. Phys. 2019, 05, 035. [Google Scholar] [CrossRef] [Green Version]
- Garani, R.; Gupta, A.; Raj, N. Observing the thermalization of dark matter in neutron stars. Phys. Rev. D 2021, 103, 043019. [Google Scholar] [CrossRef]
- Montero-Camacho, P.; Fang, X.; Vasquez, G.; Silva, M.; Hirata, C.M. Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates. J. Cosmol. Astropart. Phys. 2019, 2019, 031. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. Can Neutron stars constrain Dark Matter? Phys. Rev. D 2010, 82, 063531. [Google Scholar] [CrossRef] [Green Version]
- Leane, R.K.; Linden, T.; Mukhopadhyay, P.; Toro, N. Celestial-Body Focused Dark Matter Annihilation Throughout the Galaxy. Phys. Rev. D 2021, 103, 075030. [Google Scholar] [CrossRef]
- Garani, R.; Palomares-Ruiz, S. Evaporation of dark matter from celestial bodies. arXiv 2021, arXiv:2104.12757. [Google Scholar]
- Baryakhtar, M.; Bramante, J.; Li, S.W.; Linden, T.; Raj, N. Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos. Phys. Rev. Lett. 2017, 119, 131801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, N.; Tanedo, P.; Yu, H.B. Neutron stars at the dark matter direct detection frontier. Phys. Rev. D 2018, 97, 043006. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.F.; Busoni, G.; Robles, S. Heating up Neutron Stars with Inelastic Dark Matter. J. Cosmol. Astropart. Phys. 2018, 09, 018. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, J.F.; Bramante, J.; Leane, R.K.; Raj, N. Warming Nuclear Pasta with Dark Matter: Kinetic and Annihilation Heating of Neutron Star Crusts. J. Cosmol. Astropart. Phys. 2020, 03, 038. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, A.; Raj, N.; Tanedo, P.; Yu, H.B. Dark kinetic heating of neutron stars from contact interactions with relativistic targets. Phys. Rev. D 2020, 102, 123002. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Lopes, I. Constraints on light dark matter particles using white dwarf stars. Int. J. Mod. Phys. D 2020, 29, 2050058. [Google Scholar] [CrossRef]
- Cermeño, M.; Pérez-García, M.A. Gamma rays from dark mediators in white dwarfs. Phys. Rev. D 2018, 98, 063002. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, D.; Reisenegger, A. Internal Heating of Old Neutron Stars: Contrasting Different Mechanisms. Astron. Astrophys. 2010, 522, A16. [Google Scholar] [CrossRef]
- Hamaguchi, K.; Nagata, N.; Yanagi, K. Dark Matter Heating vs. Rotochemical Heating in Old Neutron Stars. Phys. Lett. B 2019, 795, 484–489. [Google Scholar] [CrossRef]
- Casanellas, J.; Lopes, I. Towards the use of asteroseismology to investigate the nature of dark matter. Mon. Not. R. Astron. Soc. 2011, 410, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Camargo, D.A.; Queiroz, F.S.; Sturani, R. Detecting Dark Matter with Neutron Star Spectroscopy. J. Cosmol. Astropart. Phys. 2019, 09, 051. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Rajendran, S.; Varela, J. Dark Matter Triggers of Supernovae. Phys. Rev. D 2015, 92, 063007. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Janish, R.; Narayan, V.; Rajendran, S.; Riggins, P. White Dwarfs as Dark Matter Detectors. Phys. Rev. D 2018, 98, 115027. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.F.; Busoni, G.; Robles, S. Capture of Leptophilic Dark Matter in Neutron Stars. J. Cosmol. Astropart. Phys. 2019, 06, 054. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, J.F.; Bramante, J. Supernovae Sparked By Dark Matter in White Dwarfs. Phys. Rev. D 2019, 100, 043020. [Google Scholar] [CrossRef] [Green Version]
- Janish, R.; Narayan, V.; Riggins, P. Type Ia supernovae from dark matter core collapse. Phys. Rev. D 2019, 100, 035008. [Google Scholar] [CrossRef] [Green Version]
- Petraki, K.; Volkas, R.R. Review of asymmetric dark matter. Int. J. Mod. Phys. A 2013, 28, 1330028. [Google Scholar] [CrossRef] [Green Version]
- Zurek, K.M. Asymmetric Dark Matter: Theories, Signatures, and Constraints. Phys. Rept. 2014, 537, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C. Limits on Self-Interacting Dark Matter. Phys. Rev. Lett. 2012, 108, 191301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramante, J.; Fukushima, K.; Kumar, J.; Stopnitzky, E. Bounds on self-interacting fermion dark matter from observations of old neutron stars. Phys. Rev. D 2014, 89, 015010. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P.; Tytgat, M.H.G. NonPrimordial Solar Mass Black Holes. Phys. Rev. Lett. 2018, 121, 221102. [Google Scholar] [CrossRef] [Green Version]
- Gresham, M.I.; Zurek, K.M. Asymmetric Dark Stars and Neutron Star Stability. Phys. Rev. D 2019, 99, 083008. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. Excluding Light Asymmetric Bosonic Dark Matter. Phys. Rev. Lett. 2011, 107, 091301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, S.D.; Yu, H.B.; Zurek, K.M. Constraints on Scalar Asymmetric Dark Matter from Black Hole Formation in Neutron Stars. Phys. Rev. D 2012, 85, 023519. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. (Not)-constraining heavy asymmetric bosonic dark matter. Phys. Rev. D 2013, 87, 123537. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.F.; Melatos, A.; Petraki, K. Realistic neutron star constraints on bosonic asymmetric dark matter. Phys. Rev. D 2013, 87, 123507. [Google Scholar] [CrossRef] [Green Version]
- Kurita, Y.; Nakano, H. Gravitational waves from dark matter collapse in a star. Phys. Rev. D 2016, 93, 023508. [Google Scholar] [CrossRef] [Green Version]
- Bramante, J.; Linden, T.; Tsai, Y.D. Searching for dark matter with neutron star mergers and quiet kilonovae. Phys. Rev. D 2018, 97, 055016. [Google Scholar] [CrossRef] [Green Version]
- Takhistov, V. Transmuted Gravity Wave Signals from Primordial Black Holes. Phys. Lett. B 2018, 782, 77–82. [Google Scholar] [CrossRef]
- Nelson, A.; Reddy, S.; Zhou, D. Dark halos around neutron stars and gravitational waves. J. Cosmol. Astropart. Phys. 2019, 07, 012. [Google Scholar] [CrossRef] [Green Version]
- Bramante, J.; Linden, T. Detecting Dark Matter with Imploding Pulsars in the Galactic Center. Phys. Rev. Lett. 2014, 113, 191301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramante, J.; Elahi, F. Higgs portals to pulsar collapse. Phys. Rev. D 2015, 91, 115001. [Google Scholar] [CrossRef] [Green Version]
- Bramante, J. Dark matter ignition of type Ia supernovae. Phys. Rev. Lett. 2015, 115, 141301. [Google Scholar] [CrossRef] [PubMed]
- Casanellas, J.; Lopes, I. Signatures of dark matter burning in nuclear star clusters. Astrophys. J. Lett. 2011, 733, L51. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run. Phys. Rev. Lett. 2019, 123, 161102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Kim, J.E. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett. 1979, 43, 103–107. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. Sov. J. Nucl. Phys. 1980, 31, 260. (In Russian) [Google Scholar]
- Dine, M.; Fischler, W.; Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in string theory. J. High Energy Phys. 2006, 2006, 051. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Nilles, H.P.; Ramos-Sánchez, S.; Vaudrevange, P.K.S. Accions. Phys. Lett. B 2009, 675, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J. String axiverse. Phys. Rev. D 2010, 81, 123530. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Wilczek, F. Two Applications of Axion Electrodynamics. Phys. Rev. Lett. 1987, 58, 1799. [Google Scholar] [CrossRef] [PubMed]
- Battye, R.A.; Garbrecht, B.; McDonald, J.I.; Pace, F.; Srinivasan, S. Dark matter axion detection in the radio/mm waveband. Phys. Rev. D 2020, 102, 023504. [Google Scholar] [CrossRef]
- Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Fairbairn, M.; Rashba, T.; Troitsky, S. Photon-axion mixing and ultra-high energy cosmic rays from BL Lac type objects: Shining light through the Universe. Phys. Rev. D 2011, 84, 125019. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Lai, D.; Chabrier, G.; Ho, W.C.G. Electromagnetic Polarization in Partially Ionized Plasmas with Strong Magnetic Fields and Neutron Star Atmosphere Models. Astrophys. J. 2004, 612, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.E. Axion mass limits may be improved by pulsar X-ray measurements. Phys. Rev. D 1986, 34, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Heyl, J. Probing axions with radiation from magnetic stars. Phys. Rev. D 2006, 74, 123003. [Google Scholar] [CrossRef] [Green Version]
- Chelouche, D.; Rabadán, R.; Pavlov, S.S.; Castejón, F. Spectral Signatures of Photon-Particle Oscillations from Celestial Objects. Astrophys. J. Suppl. Ser. 2009, 180, 1–29. [Google Scholar] [CrossRef]
- Perna, R.; Ho, W.C.G.; Verde, L.; van Adelsberg, M.; Jimenez, R. Signatures of Photon-Axion Conversion in the Thermal Spectra and Polarization of Neutron Stars. Astrophys. J. 2012, 748, 116. [Google Scholar] [CrossRef]
- Iwamoto, N. Axion Emission From Neutron Stars. Phys. Rev. Lett. 1984, 53, 1198–1201. [Google Scholar] [CrossRef]
- Nakagawa, M.; Adachi, T.; Kohyama, Y.; Itoh, N. Axion Bremsstrahlung in Dense Stars. II. Phonon Contributions. Astrophys. J. 1988, 326, 241. [Google Scholar] [CrossRef]
- Fortin, J.F.; Sinha, K. Constraining axion-like-particles with hard X-ray emission from magnetars. J. High Energy Phys. 2018, 2018, 48. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, M.; Co, R.T.; Dessert, C.; Safdi, B.R. Axion Emission Can Explain a New Hard X-Ray Excess from Nearby Isolated Neutron Stars. Phys. Rev. Lett. 2021, 126, 021102. [Google Scholar] [CrossRef]
- van Adelsberg, M.; Lai, D. Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals. Mon. Not. R. Astron. Soc. 2006, 373, 1495–1522. [Google Scholar] [CrossRef]
- Fortin, J.F.; Sinha, K. X-ray polarization signals from magnetars with axion-like-particles. J. High Energy Phys. 2019, 2019, 163. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.J.; Chadwick, P.M.; Brown, A.M.; Guo, H.K.; Sinha, K. Axion constraints from quiescent soft gamma-ray emission from magnetars. Phys. Rev. D 2021, 103, 023010. [Google Scholar] [CrossRef]
- Fortin, J.F.; Guo, H.K.; Harris, S.P.; Sheridan, E.; Sinha, K. Magnetars and axion-like particles: Probes with the hard X-ray spectrum. J. Cosmol. Astropart. Phys. 2021, 2021, 036. [Google Scholar] [CrossRef]
- Posselt, B.; Popov, S.B.; Haberl, F.; Trümper, J.; Turolla, R.; Neuhäuser, R. The Magnificent Seven in the dusty prairie. Astrophys. J. 2007, 308, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Dessert, C.; Foster, J.W.; Safdi, B.R. Hard X-ray Excess from the Magnificent Seven Neutron Stars. Astrophys. J. 2020, 904, 42. [Google Scholar] [CrossRef]
- Zhuravlev, A.; Popov, S.; Pshirkov, M. Photon-axion mixing in thermal emission of isolated neutron stars. Phys. Lett. B 2021, 821, 136615. [Google Scholar] [CrossRef]
- Barret, D.; Lam Trong, T.; den Herder, J.W.; Piro, L.; Barcons, X.; Huovelin, J.; Kelley, R.; Mas-Hesse, J.M.; Mitsuda, K.; Paltani, S.; et al. The Athena X-ray Integral Field Unit (X-IFU). In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 July 2016. [Google Scholar] [CrossRef]
- Soffitta, P.; Barcons, X.; Bellazzini, R.; Braga, J.; Costa, E.; Fraser, G.W.; Gburek, S.; Huovelin, J.; Matt, G.; Pearce, M.; et al. XIPE: The X-ray imaging polarimetry explorer. Exp. Astron. 2013, 36, 523–567. [Google Scholar] [CrossRef] [Green Version]
- Pshirkov, M.S.; Popov, S.B. Conversion of dark matter axions to photons in magnetospheres of neutron stars. Sov. J. Exp. Theor. Phys. 2009, 108, 384–388. [Google Scholar] [CrossRef]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.P.; Kadota, K.; Sekiguchi, T.; Tashiro, H. Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources. Phys. Rev. D 2018, 97, 123001. [Google Scholar] [CrossRef] [Green Version]
- Hook, A.; Kahn, Y.; Safdi, B.R.; Sun, Z. Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres. Phys. Rev. Lett. 2018, 121, 241102. [Google Scholar] [CrossRef] [Green Version]
- Safdi, B.R.; Sun, Z.; Chen, A.Y. Detecting axion dark matter with radio lines from neutron star populations. Phys. Rev. D 2019, 99, 123021. [Google Scholar] [CrossRef] [Green Version]
- Leroy, M.; Chianese, M.; Edwards, T.D.P.; Weniger, C. Radio signal of axion–photon conversion in neutron stars: A ray tracing analysis. Phys. Rev. D 2020, 101, 123003. [Google Scholar] [CrossRef]
- Witte, S.J.; Noordhuis, D.; Edwards, T.D.P.; Weniger, C. axion–photon Conversion in Neutron Star Magnetospheres: The Role of the Plasma in the Goldreich-Julian Model. arXiv 2021, arXiv:2104.07670. [Google Scholar]
- Battye, R.A.; Garbrecht, B.; McDonald, J.; Srinivasan, S. Radio line properties of axion dark matter conversion in neutron stars. J. High Energy Phys. 2021, 2021, 105. [Google Scholar] [CrossRef]
- Foster, J.W.; Kahn, Y.; Macias, O.; Sun, Z.; Eatough, R.P.; Kondratiev, V.I.; Peters, W.M.; Weniger, C.; Safdi, B.R. Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres. Phys. Rev. Lett. 2020, 125, 171301. [Google Scholar] [CrossRef] [PubMed]
- Darling, J. Search for Axionic Dark Matter Using the Magnetar PSR J1745-2900. Phys. Rev. Lett. 2020, 125, 121103. [Google Scholar] [CrossRef] [PubMed]
- Darling, J. New Limits on Axionic Dark Matter from the Magnetar PSR J1745-2900. Astrophys. J. Lett. 2020, 900, L28. [Google Scholar] [CrossRef]
- Battye, R.A.; Darling, J.; McDonald, J.; Srinivasan, S. Towards Robust Constraints on Axion Dark Matter using PSR J1745-2900. arXiv 2021, arXiv:2107.01225. [Google Scholar]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Wang, J.W.; Bi, X.J.; Yao, R.M.; Yin, P.F. Exploring axion dark matter through radio signals from magnetic white dwarf stars. Phys. Rev. D 2021, 103, 115021. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Postnov, K.A.; Pshirkov, M.S. Fast radio bursts. Phys. Uspekhi 2018, 61, 965. [Google Scholar] [CrossRef]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, F.; Dai, Z. The physics of fast radio bursts. Sci. China Phys. Mech. Astron. 2021, 64, 249501. [Google Scholar] [CrossRef]
- Tkachev, I.I. Fast radio bursts and axion miniclusters. Sov. J. Exp. Theor. Phys. Lett. 2015, 101, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Iwazaki, A. Axion stars and fast radio bursts. Phys. Rev. D 2015, 91, 023008. [Google Scholar] [CrossRef] [Green Version]
- Pshirkov, M.S. May axion clusters be sources of fast radio bursts? Int. J. Mod. Phys. D 2017, 26, 1750068. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, A.; Rapidis, N.M. Resonant conversion of dark matter oscillons in pulsar magnetospheres. J. Cosmol. Astropart. Phys. 2020, 2020, 054. [Google Scholar] [CrossRef]
- Buckley, J.H.; Dev, P.S.B.; Ferrer, F.; Huang, F.P. Fast radio bursts from axion stars moving through pulsar magnetospheres. Phys. Rev. D 2021, 103, 043015. [Google Scholar] [CrossRef]
- Raffelt, G.G. Axion constraints from white dwarf cooling times. Phys. Lett. B 1986, 166, 402–406. [Google Scholar] [CrossRef]
- Dessert, C.; Long, A.J.; Safdi, B.R. X-ray Signatures of Axion Conversion in Magnetic White Dwarf Stars. Phys. Rev. Lett. 2019, 123, 061104. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, L.; Wickramasinghe, D.; Kawka, A. Magnetic fields in isolated and interacting white dwarfs. Adv. Space Res. 2020, 66, 1025–1056. [Google Scholar] [CrossRef] [Green Version]
- Dessert, C.; Long, A.J.; Safdi, B.R. No evidence for axions from Chandra observation of magnetic white dwarf. arXiv 2021, arXiv:2104.12772. [Google Scholar]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; et al. New CAST limit on the axion–photon interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
- Gill, R.; Heyl, J.S. Constraining the photon-axion coupling constant with magnetic white dwarfs. Phys. Rev. D 2011, 84, 085001. [Google Scholar] [CrossRef] [Green Version]
- Isern, J.; García-Berro, E.; Torres, S.; Cojocaru, R.; Catalán, S. Axions and the luminosity function of white dwarfs: The thin and thick discs, and the halo. Mon. Not. R. Astron. Soc. 2018, 478, 2569–2575. [Google Scholar] [CrossRef]
- Raffelt, G.G. Astrophysical Axion Bounds. In Axions; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germay, 2008; Volume 741, p. 51. [Google Scholar]
- Gentile Fusillo, N.P.; Tremblay, P.E.; Gänsicke, B.T.; Manser, C.J.; Cunningham, T.; Cukanovaite, E.; Hollands, M.; Marsh, T.; Raddi, R.; Jordan, S.; et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 2019, 482, 4570–4591. [Google Scholar] [CrossRef] [Green Version]
- Isern, J.; García-Berro, E.; Torres, S.; Catalán, S. Axions and the Cooling of White Dwarf Stars. Astrophys. J. Lett. 2008, 682, L109. [Google Scholar] [CrossRef]
- Dolan, M.J.; Hiskens, F.J.; Volkas, R.R. Constraining axion-like particles using the white dwarf initial-final mass relation. J. Cosmol. Astropart. Phys. 2021, 2021, 010. [Google Scholar] [CrossRef]
- Althaus, L.G.; Serenelli, A.M.; Córsico, A.H.; Benvenuto, O.G. Evolution of a 3-Msolar star from the main sequence to the ZZ Ceti stage: The role played by element diffusion. Mon. Not. R. Astron. Soc. 2002, 330, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Kepler, S.O.; Winget, D.E.; Vanderbosch, Z.P.; Castanheira, B.G.; Hermes, J.J.; Bell, K.J.; Mullally, F.; Romero, A.D.; Montgomery, M.H.; DeGennaro, S.; et al. The Pulsating White Dwarf G117-B15A: Still the Most Stable Optical Clock Known. Astrophys. J. 2021, 906, 7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinyakov, P.; Pshirkov, M.; Popov, S. Astroparticle Physics with Compact Objects. Universe 2021, 7, 401. https://doi.org/10.3390/universe7110401
Tinyakov P, Pshirkov M, Popov S. Astroparticle Physics with Compact Objects. Universe. 2021; 7(11):401. https://doi.org/10.3390/universe7110401
Chicago/Turabian StyleTinyakov, Peter, Maxim Pshirkov, and Sergei Popov. 2021. "Astroparticle Physics with Compact Objects" Universe 7, no. 11: 401. https://doi.org/10.3390/universe7110401
APA StyleTinyakov, P., Pshirkov, M., & Popov, S. (2021). Astroparticle Physics with Compact Objects. Universe, 7(11), 401. https://doi.org/10.3390/universe7110401