Nuclear Matter in 1 + 1 Dimensions
Abstract
:1. Introduction
2. QCD for a Single Flavor
Author Contributions
Funding
Conflicts of Interest
References
- Boyanovsky, D.; de Vega, H.J.; Holman, R.; Kumar, S.P.; Pisarski, R.D. Nonequilibrium evolution of a ’Tsunami’: Dynamical symmetry breaking. Phys. Rev. D 1998, 57, 3653–3669. [Google Scholar] [CrossRef] [Green Version]
- Boyanovsky, D.; de Vega, H.J.; Holman, R.; Kumar, S.P.; Pisarski, R.D. Real time relaxation of condensates and kinetics in hot scalar QED: Landau damping. Phys. Rev. D 1998, 58, 125009. [Google Scholar] [CrossRef] [Green Version]
- Lajer, M.; Tsvelik, A.; Konik, R.; Pisarski, R.D. When nuclear matter in (1+1)d and (3+1)d is not a Fermi liquid. in press.
- Baluni, V. The Bose Form of Two-dimensional Quantum Chromodynamics. Phys. Lett. B 1980, 90, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J. Baryons and Baryonium in QCD in Two-dimensions. Nucl. Phys. B 1980, 176, 100–112. [Google Scholar] [CrossRef]
- Cohen, E.; Frishman, Y.; Gepner, D. Bosonization of Two-dimensional QCD With Flavor. Phys. Lett. B 1983, 121, 180–182. [Google Scholar] [CrossRef]
- Gepner, D. Nonabelian Bosonization and Multiflavor QED and QCD in Two-dimensions. Nucl. Phys. B 1985, 252, 481–507. [Google Scholar] [CrossRef]
- Frishman, Y.; Sonnenschein, J. Bosonization and QCD in two-dimensions. Phys. Rept. 1993, 223, 309–348. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, E.; Abdalla, M. Updating QCD in two-dimensions. Phys. Rept. 1996, 265, 253–368. [Google Scholar] [CrossRef] [Green Version]
- Armoni, A.; Frishman, Y.; Sonnenschein, J. The String tension in massive QCD in two-dimensions. Phys. Rev. Lett. 1998, 80, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Armoni, A.; Frishman, Y.; Sonnenschein, J.; Trittmann, U. The Spectrum of multiflavor QCD in two-dimensions and the nonAbelian Schwinger equation. Nucl. Phys. B 1999, 537, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, R.; Klebanov, I.R.; Pufu, S.S. Exact Symmetries and Threshold States in Two-Dimensional Models for QCD. arXiv 2021, arXiv:2101.05432. [Google Scholar]
- Witten, E. Nonabelian Bosonization in Two-Dimensions. Commun. Math. Phys. 1984, 92, 455–472. [Google Scholar] [CrossRef]
- James, A.J.A.; Konik, R.M.; Lecheminant, P.; Robinson, N.J.; Tsvelik, A.M. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-abelian bosonization to truncated spectrum methods. Rept. Prog. Phys. 2018, 81, 046002. [Google Scholar] [CrossRef]
- ’t Hooft, G. A Two-Dimensional Model for Mesons. Nucl. Phys. B 1974, 75, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Bringoltz, B. Solving two-dimensional large-N QCD with a nonzero density of baryons and arbitrary quark mass. Phys. Rev. 2009, D79, 125006. [Google Scholar] [CrossRef] [Green Version]
- McLerran, L.; Pisarski, R.D. Phases of cold, dense quarks at large N(c). Nucl. Phys. 2007, A796, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Blaschke, D.; Braun-Munzinger, P.; Cleymans, J.; Fukushima, K.; McLerran, L.D.; Oeschler, H.; Pisarski, R.D.; Redlich, K.; Sasaki, C.; et al. Hadron Production in Ultra-relativistic Nuclear Collisions: Quarkyonic Matter and a Triple Point in the Phase Diagram of QCD. Nucl. Phys. A 2010, 837, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Kojo, T.; Hidaka, Y.; McLerran, L.; Pisarski, R.D. Quarkyonic Chiral Spirals. Nucl. Phys. 2010, A843, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Kojo, T.; Pisarski, R.D.; Tsvelik, A.M. Covering the Fermi Surface with Patches of Quarkyonic Chiral Spirals. Phys. Rev. 2010, D82, 074015. [Google Scholar] [CrossRef] [Green Version]
- Kojo, T.; Hidaka, Y.; Fukushima, K.; McLerran, L.D.; Pisarski, R.D. Interweaving Chiral Spirals. Nucl. Phys. 2012, A875, 94–138. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Kojo, T. The Quarkyonic Star. Astrophys. J. 2016, 817, 180. [Google Scholar] [CrossRef] [Green Version]
- McLerran, L.; Reddy, S. Quarkyonic Matter and Neutron Stars. Phys. Rev. Lett. 2019, 122, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisarski, R.D.; Skokov, V.V.; Tsvelik, A.M. Fluctuations in cool quark matter and the phase diagram of Quantum Chromodynamics. Phys. Rev. D 2019, 99, 074025. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.S.; McLerran, L.; Sen, S. Dynamically generated momentum space shell structure of quarkyonic matter via an excluded volume model. Phys. Rev. C 2020, 101, 035201. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.C.; Hernandez-Ortiz, S.; Jeong, K.S. Excluded Volume Model for Quarkyonic Matter II: Three-flavor Shell-like Distribution of Baryons in Phase Space. Phys. Rev. C 2020, 102, 065202. [Google Scholar] [CrossRef]
- Duarte, D.C.; Hernandez-Ortiz, S.; Jeong, K.S. Excluded-volume model for quarkyonic Matter: Three-flavor baryon-quark Mixture. Phys. Rev. C 2020, 102, 025203. [Google Scholar] [CrossRef]
- Sen, S.; Warrington, N.C. Finite-Temperature Quarkyonic Matter with an Excluded Volume Model. Nucl. Phys. A 2020, 1006, 122059. [Google Scholar] [CrossRef]
- Sen, S.; Sivertsen, L. Mass and radius relations of quarkyonic matter using an excluded volume model. Astrophys. J. 2020, 915, 109. [Google Scholar] [CrossRef]
- Zhao, T.; Lattimer, J.M. Quarkyonic Matter Equation of State in Beta-Equilibrium. Phys. Rev. D 2020, 102, 023021. [Google Scholar] [CrossRef]
- Pisarski, R.D.; Tsvelik, A.M.; Valgushev, S. How transverse thermal fluctuations disorder a condensate of chiral spirals into a quantum spin liquid. Phys. Rev. D 2020, 102, 016015. [Google Scholar] [CrossRef]
- Pisarski, R.D. Remarks on nuclear matter: How an ω0 condensate can spike the speed of sound, and a model of Z(3) baryons. Phys. Rev. D 2021, 103, L071504. [Google Scholar] [CrossRef]
- Pisarski, R.D.; Tsvelik, A.M. Low energy physics of interacting bosons with a moat spectrum, and the implications for condensed matter and cold nuclear matter. arXiv 2021, arXiv:2103.15835. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarski, R.D.; Lajer, M.; Tsvelik, A.M.; Konik, R.M. Nuclear Matter in 1 + 1 Dimensions. Universe 2021, 7, 411. https://doi.org/10.3390/universe7110411
Pisarski RD, Lajer M, Tsvelik AM, Konik RM. Nuclear Matter in 1 + 1 Dimensions. Universe. 2021; 7(11):411. https://doi.org/10.3390/universe7110411
Chicago/Turabian StylePisarski, Robert D., Marton Lajer, Alexei M. Tsvelik, and Robert M. Konik. 2021. "Nuclear Matter in 1 + 1 Dimensions" Universe 7, no. 11: 411. https://doi.org/10.3390/universe7110411
APA StylePisarski, R. D., Lajer, M., Tsvelik, A. M., & Konik, R. M. (2021). Nuclear Matter in 1 + 1 Dimensions. Universe, 7(11), 411. https://doi.org/10.3390/universe7110411