Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric
Abstract
:1. Introduction
2. WP Decoherence in Flat Spacetime: The Density Matrix Approach
3. Gravitational Effects on WP Decoherence: The Lense–Thirring Metric Example
The Lense–Thirring Metric Example
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QFT | Quantum Field Theory |
QM | Quantum Mechanics |
WP | Wave packet |
SM | Standard Model |
1 | We consider a simplified model involving only two generations of neutrinos. The same considerations and results hold in the case of three flavors. |
2 | Strictly speaking, the second term in the square brackets is found with the opposite sign with respect to [56] due to a possible mistake therein. |
References
- Pontecorvo, B. Mesonium and anti-mesonium. Zh. Eksp. Teor. Fiz. 1957, 33, 549. [Google Scholar]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zh. Eksp. Teor. Fiz. 1967, 53, 1717. [Google Scholar]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 1562, 81. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Hayato, Y.; Iida, T.; Iyogi, K.; Kameda, J.; Koshio, Y.; Kozuma, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande. Phys. Rev. Lett. 2013, 110, 181802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C. Measurement of the Rate of νe + d → p + p + e− Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef]
- Blasone, M.; Vitiello, G. Quantum field theory of fermion mixing. Annals Phys. 1995, 244, 283. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G. Quantum field theory of boson mixing. Phys. Rev. D 2001, 63, 125015. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.R.; Mishchenko, Y. General Quantum Field Theory of Flavor Mixing and Oscillations. Universe 2021, 7, 51. [Google Scholar] [CrossRef]
- Blasone, M.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Casimir effect for mixed fields. Phys. Lett. B 2018, 278, 786. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G. Nonthermal signature of the Unruh effect in field mixing. Phys. Rev. D 2017, 96, 025023. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Lambiase, G.; Quaranta, A. Neutrinos in curved spacetime: Particle mixing and flavor oscillations. Phys. Rev. D 2020, 101, 095022. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. q-generalized Tsallis thermostatistics in Unruh effect for mixed fields. Phys. Rev. D 2021, 104, 045004. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. Nonextensive Tsallis statistics in Unruh effect for Dirac neutrinos. arXiv 2021, arXiv:2107.11402. [Google Scholar]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Role of neutrino mixing in accelerated proton decay. Phys. Rev. D 2018, 97, 105008. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Neutrino oscillations in Unruh radiation. Phys. Lett. B 2020, 800, 135083. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. On the β-decay of the accelerated proton and neutrino oscillations: A three-flavor description with CP violation. Eur. Phys. J. C 2020, 80, 130. [Google Scholar] [CrossRef]
- Lee, C.Y. Interactions and oscillations of coherent flavor eigenstates in beta decay. Mod. Phys. Lett. A 2020, 29, 2030015. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Lambiase, G.; Petruzziello, L. Non-relativistic neutrinos and the weak equivalence principle apparent violation. Phys. Lett. B 2020, 811, 135883. [Google Scholar] [CrossRef]
- Nussinov, S. Solar Neutrinos and Neutrino Mixing. Phys. Lett. B 1976, 63, 201. [Google Scholar] [CrossRef]
- Giunti, C.; Kim, C.W.; Lee, U.W. When do neutrinos really oscillate? Quantum mechanics of neutrino oscillations. Phys. Rev. D 1991, 44, 3635. [Google Scholar] [CrossRef]
- Giunti, C.; Kim, C.W. Coherence of neutrino oscillations in the wave packet approach. Phys. Rev. D 1998, 58, 017301. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. Neutrinos in cosmology. Phys. Rept. 2002, 370, 333. [Google Scholar] [CrossRef] [Green Version]
- Kiers, K.; Weiss, N. Neutrino oscillations in a model with a source and detector. Phys. Rev. D 1998, 57, 3091. [Google Scholar] [CrossRef] [Green Version]
- Cardall, C.Y. Coherence of neutrino flavor mixing in quantum field theory. Phys. Rev. D 2000, 61, 073006. [Google Scholar] [CrossRef] [Green Version]
- Beuthe, M. Towards a unique formula for neutrino oscillations in vacuum. Phys. Rev. D 2002, 66, 013003. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C. Neutrino wave packets in quantum field theory. J. High Energy Phys. 2002, 11, 017. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Kim, C.W.; Lee, U.W. Coherence of neutrino oscillations in vacuum and matter in the wave packet treatment. Phys. Lett. B 1992, 274, 87. [Google Scholar] [CrossRef]
- Kersten, J.; Smirnov, A.Y. Decoherence and oscillations of supernova neutrinos. Eur. Phys. J. C 2016, 76, 339. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.; Kopp, J.; Lindner, M. Collective neutrino oscillations and neutrino wave packets. J. Cosmol. Astropart. Phys. 2017, 9, 017. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C. Coherence and wave packets in neutrino oscillations. Found. Phys. Lett. 2004, 17, 103. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, A.; Volpe, M.C. Neutrino decoherence in presence of strong gravitational fields. Phys. Lett. B 2020, 801, 135150. [Google Scholar] [CrossRef]
- Stodolsky, L. 36 On the Treatment of Neutrino Oscillations in a Thermal Environment. Phys. Rev. D 1987, 36, 2273. [Google Scholar] [CrossRef] [PubMed]
- Cardall, C.Y.; Fuller, G.M. Neutrino oscillations in curved space-time: An Heuristic treatment. Phys. Rev. D 1997, 55, 7960. [Google Scholar] [CrossRef] [Green Version]
- Fornengo, N.; Giunti, C.; Kim, C.W.; Song, J. Gravitational effects on the neutrino oscillation. Phys. Rev. D 1997, 56, 1895. [Google Scholar] [CrossRef] [Green Version]
- Swami, H.; Lochan, K.; Patel, K.M. Aspects of gravitational decoherence in neutrino lensing. arXiv 2021, arXiv:2106.07671. [Google Scholar]
- Chakrabarty, H.; Borah, D.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B. Effects of gravitational lensing on neutrino oscillation in γ-spacetime. arXiv 2021, arXiv:2109.02395. [Google Scholar]
- Lense, J.; Thirring, H. Über die Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie (trad. On the influence of the proper rotation of a central body on the motion of the planets and the moon, according to Einstein’s theory of gravitation). Z. Phys. 1918, 19, 156. [Google Scholar]
- Cai, Y.C.; Papini, G. Neutrino helicity flip from gravity spin coupling. Phys. Rev. Lett. 1991, 1259, 66. [Google Scholar] [CrossRef]
- Dvornikov, M. Spin effects in neutrino gravitational scattering. Phys. Rev. D 2020, 056018, 101. [Google Scholar] [CrossRef] [Green Version]
- Mastrototaro, L.; Lambiase, G. Neutrino spin oscillations in conformally gravity coupling models and quintessence surrounding a black hole. Phys. Rev. D 2021, 024021, 104. [Google Scholar]
- Konno, K.; Kasai, M. General relativistic effects of gravity in quantum mechanics: A case of ultra-relativistic, spin 1/2 particles. Prog. Theor. Phys. 1998, 100, 1145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Li, X.Q. Three-generation neutrino oscillations in curved spacetime. Nucl. Phys. B 2016, 911, 563. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, D.V.; Burgard, C. Gravitationally Induced Neutrino-Oscillation Phases. Gen. Rel. Grav. 1996, 28, 1161. [Google Scholar] [CrossRef]
- Wudka, J. Mass dependence of the gravitationally induced wave-function phase. Phys. Rev. D 2001, 64, 065009. [Google Scholar] [CrossRef] [Green Version]
- Visinelli, L. Neutrino flavor oscillations in a curved space-time. Gen. Rel. Grav. 2015, 47, 62. [Google Scholar] [CrossRef]
- Khalifeh, A.R.; Jimenez, R. Distinguishing Dark Energy Models with Neutrino Oscillations. arXiv 2021, arXiv:2105.07973. [Google Scholar]
- Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Neutrino optics and oscillations in gravitational fields. Phys. Rev. D 2005, 71, 073011. [Google Scholar] [CrossRef] [Green Version]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Neutrino oscillations in extended theories of gravity. Phys. Rev. D 2020, 101, 024016. [Google Scholar] [CrossRef] [Green Version]
- Mavromatos, N.E.; Meregaglia, A.; Rubbia, A.; Sakharov, A.; Sarkar, S. Quantum-Gravity Decoherence Effects in Neutrino Oscillations: Expected Constraints From CNGS and J-PARC. Phys. Rev. D 2008, 77, 053014. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, M.; Nicolini, P.; Bleicher, M. Quantum Gravity signals in neutrino oscillations. Int. J. Mod. Phys. E 2011, 20S2, 1. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cim. B 2002, 117, 743. [Google Scholar]
- Ciufolini, I. Dragging of inertial frames. Nature 2007, 449, 41. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Time-energy uncertainty relation for neutrino oscillations in curved spacetime. Class. Quant. Grav. 2020, 37, 155004. [Google Scholar] [CrossRef]
- Petruzziello, L. Comment on “Neutrino decoherence in presence of strong gravitational fields”. Phys. Lett. B 2020, 809, 135784. [Google Scholar] [CrossRef]
- Cohen, J.M.; Brill, D.R. Further Examples of <<Machian>> Effects of Rotating Bodies in General Relativity. Il Nuovo Cimento B 1968, 56, 209. [Google Scholar]
- Luciano, G.G.; Petruzziello, L. Testing gravity with neutrinos: From classical to quantum regime. Int. J. Mod. Phys. D 2020, 29, 2043002. [Google Scholar] [CrossRef]
- Stuttard, T.; Jensen, M. Neutrino decoherence from quantum gravitational stochastic perturbations. Phys. Rev. D 2020, 102, 115003. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, G.G.; Blasone, M. Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric. Universe 2021, 7, 417. https://doi.org/10.3390/universe7110417
Luciano GG, Blasone M. Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric. Universe. 2021; 7(11):417. https://doi.org/10.3390/universe7110417
Chicago/Turabian StyleLuciano, Giuseppe Gaetano, and Massimo Blasone. 2021. "Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric" Universe 7, no. 11: 417. https://doi.org/10.3390/universe7110417
APA StyleLuciano, G. G., & Blasone, M. (2021). Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric. Universe, 7(11), 417. https://doi.org/10.3390/universe7110417