Sterile Neutrinos with Neutrino Telescopes
Abstract
:1. Neutrino Anomalies
2. Neutrinos Propagating through the Earth with a Sterile State
3. Searches with Atmospheric Neutrinos below 100 GeV in Neutrino Telescopes
4. Searches with Atmospheric Neutrinos above 100 GeV in Neutrino Telescopes
5. Signals in the Astrophysical Neutrino Flavor
6. Conclusions and Future Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Athanassopoulos, C. et al. [LSND Collaboration] Evidence for anti-muon-neutrino—> anti-electron-neutrino oscillations from the LSND experiment at LAMPF. Phys. Rev. Lett. 1996, 77, 3082–3085. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A. et al. [LSND Collaboration] Evidence for neutrino oscillations from the observation of appearance in a beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A. et al. [MiniBooNE Collaboratio] Improved Search for Oscillations in the MiniBooNE Experiment. Phys. Rev. Lett. 2013, 110, 161801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mention, G.; Fechner, M.; Lasserre, T.; Mueller, T.A.; Lhuillier, D.; Cribier, M.; Letourneau, A. The Reactor Antineutrino Anomaly. Phys. Rev. D 2011, 83, 073006. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, J.N.; Krastev, P.I.; Lisi, E. Limits on electron-neutrino oscillations from the GALLEX Cr-51 source experiment. Phys. Lett. B 1995, 348, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, B. et al. [KARMEN Collaboration] Upper limits for neutrino oscillations muon-anti-neutrino —> electron-anti-neutrino from muon decay at rest. Phys. Rev. D 2002, 65, 112001. [Google Scholar] [CrossRef] [Green Version]
- Abe, K. et al. [Super-Kamiokande Collaboration] Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande. Phys. Rev. D 2015, 91, 052019. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P. et al. [MINOS Collaboration] Active to sterile neutrino mixing limits from neutral-current interactions in MINOS. Phys. Rev. Lett. 2011, 107, 011802. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G. et al. [MiniBooNE and SciBooNE Collaborations] Dual baseline search for muon antineutrino disappearance at 0.1 eV2 < Δm2 < 100 eV2. Phys. Rev. D 2012, 86, 052009. [Google Scholar] [CrossRef] [Green Version]
- Dydak, F.; Feldman, G.J.; Guyot, C.; Merlo, J.P.; Meyer, H.-J.; Rothberg, J.; Steinberger, J.; Taureg, H.; von Rüden, W.; Wachsmuth, H.; et al. A Search for Muon-neutrino Oscillations in the Delta m**2 Range 0.3-eV**2 to 90-eV**2. Phys. Lett. B 1984, 134, 281. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Laveder, M. 3+1 and 3+2 Sterile Neutrino Fits. Phys. Rev. D 2011, 84, 073008. [Google Scholar] [CrossRef] [Green Version]
- Kopp, J.; Machado, P.A.N.; Maltoni, M.; Schwetz, T. Sterile Neutrino Oscillations: The Global Picture. JHEP 2013, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Conrad, J.M.; Ignarra, C.M.; Karagiorgi, G.; Shaevitz, M.H.; Spitz, J. Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements. Adv. High Energy Phys. 2013, 2013, 163897. [Google Scholar] [CrossRef] [Green Version]
- Palomares-Ruiz, S.; Pascoli, S.; Schwetz, T. Explaining LSND by a decaying sterile neutrino. JHEP 2005, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Gninenko, S.N. The MiniBooNE anomaly and heavy neutrino decay. Phys. Rev. Lett. 2009, 103, 241802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, A.E. Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies. Phys. Rev. D 2011, 84, 053001. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Langacker, P. Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies. JHEP 2012, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Lu, R.; Lu, S.; Salvado, J.; Stefanek, B.A. Three Twin Neutrinos: Evidence from LSND and MiniBooNE. Phys. Rev. D 2016, 93, 073004. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzo, E.; Jana, S.; Machado, P.A.N.; Zukanovich Funchal, R. Dark Neutrino Portal to Explain MiniBooNE excess. Phys. Rev. Lett. 2018, 121, 241801. [Google Scholar] [CrossRef] [Green Version]
- Ballett, P.; Hostert, M.; Pascoli, S. Dark Neutrinos and a Three Portal Connection to the Standard Model. Phys. Rev. D 2020, 101, 115025. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Hostert, M.; Tsai, Y.D. Testing New Physics Explanations of the MiniBooNE Anomaly at Neutrino Scattering Experiments. Phys. Rev. Lett. 2019, 123, 261801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dentler, M.; Esteban, I.; Kopp, J.; Machado, P. Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies. Phys. Rev. D 2020, 101, 115013. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Kang, S.K. A model for neutrino anomalies and IceCube data. JHEP 2019, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- De Gouvêa, A.; Peres, O.L.G.; Prakash, S.; Stenico, G.V. On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies. JHEP 2020, 7, 141. [Google Scholar] [CrossRef]
- Abdallah, W.; Gandhi, R.; Roy, S. Two-Higgs doublet solution to the LSND, MiniBooNE and muon g-2 anomalies. Phys. Rev. D 2021, 104, 055028. [Google Scholar] [CrossRef]
- Hostert, M.; Pospelov, M. Constraints on decaying sterile neutrinos from solar antineutrinos. Phys. Rev. D 2021, 104, 055031. [Google Scholar] [CrossRef]
- Brdar, V.; Fischer, O.; Smirnov, A.Y. Model-independent bounds on the nonoscillatory explanations of the MiniBooNE excess. Phys. Rev. D 2021, 103, 075008. [Google Scholar] [CrossRef]
- Abdallah, W.; Gandhi, R.; Roy, S. Understanding the MiniBooNE and the muon and electron g - 2 anomalies with a light Z’ and a second Higgs doublet. JHEP 2020, 12, 188. [Google Scholar] [CrossRef]
- Dutta, B.; Kim, D.; Thompson, A.; Thornton, R.T.; Van de Water, R.G. Solutions to the MiniBooNE Anomaly from New Physics in Charged Meson Decays. arXiv 2021, arXiv:2110.11944. [Google Scholar]
- Vergani, S.; Kamp, N.W.; Diaz, A.; Argüelles, C.A.; Conrad, J.M.; Shaevitz, M.H.; Uchida, M.A. Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay. arXiv 2021, arXiv:2105.06470. [Google Scholar]
- Fischer, O.; Hernández-Cabezudo, A.; Schwetz, T. Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range. Phys. Rev. D 2020, 101, 075045. [Google Scholar] [CrossRef]
- Dasgupta, B.; Kopp, J. Sterile Neutrinos. Phys. Rept. 2021, 928, 63. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Acero, M.A.; Agarwalla, S.K.; Aguilar-Arevalo, A.A.; Albright, C.H.; Antusch, S.; Argüelle, C.A.; Alantekin, A.B.; Barenboim, G.; Barger, V.; et al. Light Sterile Neutrinos: A White Paper. arXiv 2012, arXiv:1204.5379. [Google Scholar]
- Diaz, A.; Argüelles, C.A.; Collin, G.H.; Conrad, J.M.; Shaevitz, M.H. Where Are We With Light Sterile Neutrinos? Phys. Rept. 2020, 884, 1–59. [Google Scholar] [CrossRef]
- Böser, S.; Buck, C.; Giunti, C.; Lesgourgues, J.; Ludhova, L.; Mertens, S.; Schukraft, A.; Wurm, M. Status of Light Sterile Neutrino Searches. Prog. Part. Nucl. Phys. 2020, 111, 103736. [Google Scholar] [CrossRef] [Green Version]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Akhmedov, E.K. Neutrino oscillations in inhomogeneous matter. (In Russian). Sov. J. Nucl. Phys. 1988, 47, 301–302. [Google Scholar]
- Krastev, P.I.; Smirnov, A.Y. Parametric Effects in Neutrino Oscillations. Phys. Lett. B 1989, 226, 341–346. [Google Scholar] [CrossRef]
- Chizhov, M.; Maris, M.; Petcov, S.T. On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the earth core. arXiv 1998, arXiv:9810501. [Google Scholar]
- Chizhov, M.V.; Petcov, S.T. New conditions for a total neutrino conversion in a medium. Phys. Rev. Lett. 1999, 83, 1096–1099. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.K.; Smirnov, A.Y. Comment on ‘New conditions for a total neutrino conversion in a medium’. Phys. Rev. Lett. 2000, 85, 3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunokawa, H.; Peres, O.L.G.; Zukanovich Funchal, R. Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope. Phys. Lett. B 2003, 562, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Choubey, S. Signature of sterile species in atmospheric neutrino data at neutrino telescopes. JHEP 2007, 12, 14. [Google Scholar] [CrossRef]
- Barger, V.; Gao, Y.; Marfatia, D. Is there evidence for sterile neutrinos in IceCube data? Phys. Rev. D 2012, 85, 011302. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, A.; Halzen, F.; Peres, O.L.G. Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data. JCAP 2012, 11, 41. [Google Scholar] [CrossRef]
- Razzaque, S.; Smirnov, A.Y. Searches for sterile neutrinos with IceCube DeepCore. Phys. Rev. D 2012, 85, 093010. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, A.; Smirnov, A.Y. Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data. JHEP 2013, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, A.; Halzen, F.; Peres, O.L.G. Exploring ντ − νs mixing with cascade events in DeepCore. JCAP 2013, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Rodejohann, W.; Xu, X.J. Sterile neutrinos in the light of IceCube. JHEP 2016, 1, 124. [Google Scholar] [CrossRef] [Green Version]
- Argüelles Delgado, C.A.; Salvado, J.; Weaver, C.N. A Simple Quantum Integro-Differential Solver (SQuIDS). Comput. Phys. Commun. 2015, 196, 569–591. [Google Scholar] [CrossRef] [Green Version]
- Blennow, M.; Coloma, P.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions. JHEP 2017, 4, 153. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Search for sterile neutrino mixing using three years of IceCube DeepCore data. Phys. Rev. D 2017, 95, 112002. [Google Scholar] [CrossRef] [Green Version]
- Blennow, M.; Fernandez-Martinez, E.; Gehrlein, J.; Hernandez-Garcia, J.; Salvado, J. IceCube bounds on sterile neutrinos above 10 eV. Eur. Phys. J. C 2018, 78, 807. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. Phys. Rev. D 2020, 102, 052009. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Phys. Rev. Lett. 2020, 125, 141801. [Google Scholar] [CrossRef] [PubMed]
- Group, P.D.; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Trettin, A. Sensitivity of a search for eV-scale sterile neutrinos with 8 years of IceCube DeepCore data. J. Instrum. 2021, 16, C09005. [Google Scholar] [CrossRef]
- Chizhov, M.V.; Petcov, S.T. Enhancing mechanisms of neutrino transitions in a medium of nonperiodic constant density layers and in the earth. Phys. Rev. D 2001, 63, 073003. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Searches for Sterile Neutrinos with the IceCube Detector. Phys. Rev. Lett. 2016, 117, 071801. [Google Scholar] [CrossRef] [Green Version]
- Collin, G.H.; Argüelles, C.A.; Conrad, J.M.; Shaevitz, M.H. First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino. Phys. Rev. Lett. 2016, 117, 221801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dentler, M.; Hernández-Cabezudo, A.; Kopp, J.; Machado, P.A.N.; Maltoni, M.; Martinez-Soler, I.; Schwetz, T. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos. JHEP 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Stockdale, I.E.; Bodek, A.; Borcherding, F.; Giokaris, N.; Lang, K.; Garfinkle, D.; Merritt, F.S.; Oreglia, M.; Reutens, P.; Auchincloss, P.S.; et al. Limits on Muon Neutrino Oscillations in the Mass Range 55-eV**2 < Delta m**2 < 800-eV**2. Phys. Rev. Lett. 1984, 52, 1384. [Google Scholar] [CrossRef]
- Adamson, P. et al. [MINOS Collaboration] Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS. Phys. Rev. Lett. 2016, 117, 151803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahn, K.B.M. et al. [MiniBooNE and SciBooNE Collaborations] Dual baseline search for muon neutrino disappearance at 0.5 eV2 < Δm2 < 40 eV2. Phys. Rev. D 2012, 85, 032007. [Google Scholar] [CrossRef] [Green Version]
- Argüelles, C.A.; Katori, T.; Salvado, J. New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante, M.; Beacom, J.F.; Winter, W. Theoretically palatable flavor combinations of astrophysical neutrinos. Phys. Rev. Lett. 2015, 115, 161302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, R. et al. [IceCube Collaboration] Measurement of Astrophysical Tau Neutrinos in IceCube’s High-Energy Starting Events. arXiv 2020, arXiv:2011.03561. [Google Scholar]
- Aartsen, M.G. et al. [IceCube Collaboration] Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett. 2020, 125, 121104. [Google Scholar] [CrossRef]
- Abbasi, R. et al. [IceCube Collaboration] The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. arXiv 2020, arXiv:2011.03545. [Google Scholar]
- Aartsen, M.G. et al. [IceCube Collaboration] Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Phys. Rev. Lett. 2015, 115, 081102. [Google Scholar] [CrossRef] [Green Version]
- Song, N.; Li, S.W.; Argüelles, C.A.; Bustamante, M.; Vincent, A.C. The Future of High-Energy Astrophysical Neutrino Flavor Measurements. JCAP 2021, 4, 54. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophys. J. Lett. 2018, 868, L20. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Farrag, K.; Katori, T.; Khandelwal, R.; Mandalia, S.; Salvado, J. Sterile neutrinos in astrophysical neutrino flavor. JCAP 2020, 2, 015. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001. [Google Scholar] [CrossRef]
- Šimkovic, F.; Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannash, R.; Belolaptikov, I.A.; Brudanin, V.B.; Budnev, N.M.; Domogatsky, G.V.; Doroshenko, A.A.; et al. The Baikal-GVD neutrino telescope: First results of multi-messenger study. PoS 2020, ICRC2019, 1013. [Google Scholar] [CrossRef]
- Agostini, M.; Böhmer, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuser, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915. [Google Scholar] [CrossRef]
- Romero-Wolf, A.; Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Cummings, A.; Schoorlemmer, H.; Wissel, S.; Zas, E.; Argüelles, C.; Barreda (VRI), H.; Bazo, J.; et al. An Andean Deep-Valley Detector for High-Energy Tau Neutrinos. Latin American Strategy Forum for Research Infrastructure. arXiv 2020, arXiv:2002.06475. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
- Brdar, V.; Kopp, J.; Wang, X.P. Sterile Neutrinos and Flavor Ratios in IceCube. JCAP 2017, 1, 26. [Google Scholar] [CrossRef]
- Parke, S.; Ross-Lonergan, M. Unitarity and the three flavor neutrino mixing matrix. Phys. Rev. D 2016, 93, 113009. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [The IceCube Collaboration] A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux. Astrophys. J. 2015, 809, 98. [Google Scholar] [CrossRef]
- Machado, P.A.; Palamara, O.; Schmitz, D.W. The Short-Baseline Neutrino Program at Fermilab. Ann. Rev. Nucl. Part. Sci. 2019, 69, 363–387. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüelles, C.A.; Salvado, J. Sterile Neutrinos with Neutrino Telescopes. Universe 2021, 7, 426. https://doi.org/10.3390/universe7110426
Argüelles CA, Salvado J. Sterile Neutrinos with Neutrino Telescopes. Universe. 2021; 7(11):426. https://doi.org/10.3390/universe7110426
Chicago/Turabian StyleArgüelles, Carlos A., and Jordi Salvado. 2021. "Sterile Neutrinos with Neutrino Telescopes" Universe 7, no. 11: 426. https://doi.org/10.3390/universe7110426
APA StyleArgüelles, C. A., & Salvado, J. (2021). Sterile Neutrinos with Neutrino Telescopes. Universe, 7(11), 426. https://doi.org/10.3390/universe7110426