Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime
Abstract
:1. Introduction
2. Killing Tensor
3. Two-Form Square Root of the Killing Tensor
4. Separability of the Klein–Gordon Equation
5. Carter Constant and Other Conserved Quantities
- For , we have ; the motion is restricted to the equatorial plane.
- For with , the range of is a priori unconstrained; .
- For with , the declination is fixed , and the motion is restricted to a constant declination conical surface.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Wave Operators
1 |
References
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Painleve-Gullstrand form of the Lense-Thirring spacetime. Universe 2021, 7, 105. [Google Scholar] [CrossRef]
- Painlevé, P. La mécanique classique et la théorie de la relativité. Comptes Rendus de l’Académie des Sciences 1921, 173, 677–680. [Google Scholar]
- Painlevé, P. La gravitation dans la mécanique de Newton et dans la mécanique d’Einstein. Comptes Rendus de l’Académie des Sciences 1921, 173, 873–886. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik Astronomi och Fysik 1922, 16, 1–15. [Google Scholar]
- Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 2001, 69, 476–480. [Google Scholar] [CrossRef] [Green Version]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Unit-lapse versions of the Kerr spacetime. Class. Quant. Grav. 2021, 38, 055001. [Google Scholar] [CrossRef]
- Birkhoff, G. Relativity and Modern Physics; Harvard University Press: Cambridge, MA, USA, 1923. [Google Scholar]
- Jebsen, J.T. Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum. Arkiv för Matematik Astronomi och Fysik 1921, 15, 18. [Google Scholar]
- Deser, S.; Franklin, J. Schwarzschild and Birkhoff a la Weyl. Am. J. Phys. 2005, 73, 261. [Google Scholar] [CrossRef] [Green Version]
- Johansen, N.V.; Ravndal, F. On the discovery of Birkhoff’s theorem. Gen. Rel. Grav. 2006, 38, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Skakala, J.; Visser, M. Birkhoff-like theorem for rotating stars in (2+1) dimensions. arXiv 2009, arXiv:0903.2128. [Google Scholar]
- Thirring, H.; Lense, J. Über den Einfluss der Eigenrotation der Zentralkörperauf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Mashoon, B.; Hehl, F.W.; Theiss, D.S. On the influence of the proper rotations of central bodies on the motions of planets and moons in Einstein’s theory of gravity. Gen. Relativ. Gravit. 1984, 16, 727–741. [Google Scholar]
- Pfister, H. On the History of the So-Called Lense–Thirring Effect. Available online: http://philsci-archive.pitt.edu/archive/00002681/01/lense.pdf (accessed on 1 December 2021).
- Adler, R.J.; Bazin, M.; Schiffer, M. Introduction to General Relativity, 2nd ed.; McGraw–Hill: New York, NY, USA, 1975. [Google Scholar]
- Misner, C.; Thorne, K.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Hobson, M.P.; Estathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- D’Inverno, R. Introducing Einstein’s Relativity; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Hartle, J. Gravity: An Introduction to Einstein’s General Relativity; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Carroll, S. An Introduction to General Relativity: Spacetime and Geometry; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Visser, M. The Kerr spacetime: A brief introduction. arXiv 2007, arXiv:0706.0622. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. (Eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kerr, R. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Kerr, R. Gravitational collapse and rotation. In Quasi-Stellar Sources and Gravitational Collapse, Proceedings of the First Texas Symposium on Relativistic Astrophysics; Robinson, I., Schild, A., Schücking, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1965; pp. 99–102. [Google Scholar]
- Newman, E.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys. 1965, 6, 918. [Google Scholar] [CrossRef]
- O’Neill, B. The Geometry of Kerr Black Holes; Peters: Wellesley, MA, USA, 1995. [Google Scholar]
- Hamilton, A.J.; Lisle, J.P. The River model of black holes. Am. J. Phys. 2008, 76, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Darboux diagonalization of the spatial 3-metric in Kerr spacetime. Gen. Rel. Grav. 2021, 53, 3. [Google Scholar] [CrossRef]
- Kroon, J.A.V. On the nonexistence of conformally flat slices in the Kerr and other stationary space-times. Phys. Rev. Lett. 2004, 92, 041101. [Google Scholar] [CrossRef] [Green Version]
- Kroon, J.A.V. Asymptotic expansions of the Cotton-York tensor on slices of stationary space-times. Class. Quant. Grav. 2004, 21, 3237–3250. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, J.L.; Kroon, J.A.V.; Gourgoulhon, E. From geometry to numerics: Interdisciplinary aspects in mathematical and numerical relativity. Class. Quant. Grav. 2008, 25, 093001. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Visser, M. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 2018, 98, 124009. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Barceló, C.; Liberati, S.; Sonego, S. Small, dark, and heavy: But is it a black hole? arXiv 2009, arXiv:0902.0346. [Google Scholar]
- Visser, M. Black holes in general relativity. Commun. Math. Phys. 2008. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, G.O.; Kokkotas, K.D. On Kerr black hole deformations admitting a Carter constant and an invariant criterion for the separability of the wave equation. Gen. Rel. Grav. 2021, 53, 21. [Google Scholar] [CrossRef]
- Papadopoulos, G.O.; Kokkotas, K.D. Preserving Kerr symmetries in deformed spacetimes. Class. Quant. Grav. 2018, 35, 185014. [Google Scholar] [CrossRef] [Green Version]
- Benenti, S.; Francaviglia, M. Remarks on Certain Separability Structures and Their Applications to General Relativity. Gen. Relativ. Gravit. 1979, 10, 79–92. [Google Scholar] [CrossRef]
- Frolov, V.; Krtous, P.; Kubiznak, D. Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 2017, 20, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, J.; Franzin, E.; Liberati, S. A novel family of rotating black hole mimickers. JCAP 2021, 4, 082. [Google Scholar] [CrossRef]
- Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. JCAP 2021, 7, 036. [Google Scholar] [CrossRef]
- Giorgi, E. The Carter tensor and the physical-space analysis in perturbations of Kerr-Newman spacetime. arXiv 2021, arXiv:2105.14379. [Google Scholar]
- Benenti, S.; Chanu, C.; Rastelli, G. Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators. J. Math. Phys. 2002, 43, 5223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baines, J.; Berry, T.; Simpson, A.; Visser, M. Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe 2021, 7, 473. https://doi.org/10.3390/universe7120473
Baines J, Berry T, Simpson A, Visser M. Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe. 2021; 7(12):473. https://doi.org/10.3390/universe7120473
Chicago/Turabian StyleBaines, Joshua, Thomas Berry, Alex Simpson, and Matt Visser. 2021. "Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime" Universe 7, no. 12: 473. https://doi.org/10.3390/universe7120473
APA StyleBaines, J., Berry, T., Simpson, A., & Visser, M. (2021). Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime. Universe, 7(12), 473. https://doi.org/10.3390/universe7120473