Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei
Abstract
:1. Introduction
2. The Feii Emission Lines
- the blend on the blue side of H, made up of lines from the m37 and m38, and usually referred to as Feii4570, whose intensity is the Feii measure that enters in the definition of and applied in most papers following Boroson and Green [4];
- m42, with two lines appearing as satellite lines of [Oiii]4959,5007. The line at 5018 might be affected by contamination from He i, and is strongly affected also by the red wing of [Oiii]5007. Given these difficulties the m42 lines were included in the fits but no result concerning this multiplet is considered;
- the lines of multiplets m48 and m49 that provide the bulk of the emission of the Feii blend on the red side of H (referred to as Feii5270 or as the Feii red blend).
3. Sample
- a sample of bright quasars from the Sloan Digital Sky Survey (SDSS) database in the redshift range [28,57]. Composite median spectra were extracted for the RQ, CD and FR-II radio classes. A significant number of RL sources ( out of the 680 quasars of the original sample) are found only in the spectral bins A1, B1, B1: 8, 16, 9 CDs and 10, 23, 11 FR-IIs in each bin, respectively. All sources (save a borderline one) in the sample that are RL with extended emission satisfy the power criterion at 1.5 GHz erg s Hz that separate FR-II sources from the lower luminosity FR-I [58,59].4 In the last bin, however, the Feii intensity is consistent with 0, so that only sources in bin A1 and B1 are considered. In addition, in A1 FR-II the Fe ii emission is too weak for a meaningful analysis. In conclusion, our bright quasar sample belongs in the following composite spectra: A1 RQ, A1 CD, B1 RQ, B1 CD, B1 FR-II;
- three individual relativistically jetted NLSy1s with -ray detections, that show more prominent Feii emission than the composites. The -ray detection supports the presence of a relativistic jet as the origin of the radio power for these sources [61]. They were selected because high-quality optical spectra were available for the three of them.
4. Analysis
- the modelling of the spectrum using a “solid” Feii template, scaled and broadened to minimise the in a multi-component fit. It is basically the one of Boroson and Green [4] actualised with a higher resolution spectrum and a model of the Feii emission underlying H [20]. In this case, a multi-component fit was carried out including all known emission components, as detailed in several recent works [74,75,76]. Specifically, the redward asymmetric H has been modelled by the use of three components—a narrow, a broad and a very broad component ([77], and references therein). After verification that the host galaxy spectral emission is not contributing significantly, the local continuum was fit with a power law;
5. Results
5.1. Feii Emission Comparison between RQ and RL
5.2. -ray Detected RL NLSy1s
5.3. Models with Relative Intensity of the Multiplets Free to Vary
- There is a significant difference (by a factor ≈2) between RQ and RL sources in the same spectral types (meaning similar mass, Eddington ratio ≲0.1, and luminosity);
- The various measurements of the blue and red blend ratios suggest a somewhat higher values for the A1 and B1 RQ than for the RL sources (≈0.9–1 vs. 0.7). The effect is not strong: yet, it is apparent especially in Figure 7.
6. Discussion
6.1. Photoionization Computations
6.2. Composites RL and RQ
6.3. -Detected NLSy1s
7. Summary and Conclusions
- the template based on the I Zw 1 spectrum works equally well for RQ and RL objects. Deviation in and equivalent width measurements due to differences between the template and the observed spectra have been found to be ≲ 0.03, and a few Å. In particular, no correction is needed for the placement of RL in the MS built from RQ-dominated samples;
- Somewhat surprisingly, SED differences between RQ and RL cannot account for the stronger Feii emission in RQ9. We suggest that other factors related to the evolutionary pattern of the circumnuclear regions of the active nucleus should be investigated;
- Last, the SED shape does not seem so important in determining the optical Feii prominence with respect to H for such sources with intermediate Eddington ratios (∼0.1), as the change from the Laor et al. [88] to the Korista et al. [89] SED produces no significant change in , even if the number of ionizing photons is increased by a factor ≈3. We remark that, for sources at higher Eddington ratios, this might be different, as has been tested and shown in Panda et al. [31]. Those authors found that the SED shape matters for pushing the higher, especially when the contribution from a soft-X-ray excess is accounted for.
- The ratio between the B and the R blend is found to be ≈ 0.9–1.0 and to be consistent with the predictions of the photoionization computation. A slightly lower value (≈0.7) might be possible for the B1 RL composites. However, the measurement is excruciatingly difficult, considering the uncertain influence of the Heii4686 emission that is known to be very strong in cases where Feii is negligible (e.g., [113]), and of several other factors that should play a lesser role. More importantly, the B/R value around ≈ 1 is found also in higher Eddington ratio sources which are stronger Feii emitters such as the 3 -detected NLSy1s considered in this study, all with Eddington ratio ≈ 0.5, typical of Population A quasars. Since is correlated with Eddington ratio [114,115], and the B/R is apparently independent from , a lower B/R might be a genuine radio loudness effect or, perhaps more likely, an effect dependent on other RQ/RL sample differences.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus |
BLR | Broad Line Region |
CD | Core dominated |
FR-I | Fanaroff-Riley I |
FR-II | Fanaroff-Riley II |
FWHM | Full Width Half-Maximum |
MS | Main Sequence |
NLSy1 | Narrow-Line Seyfert 1 |
RL | Radio loud |
RQ | Radio quiet |
SDSS | Sloan Digital Sky Survey |
SED | Spectral energy distribution |
S/N | Signal-to-noise ratio |
Appendix A. Restricted Range
1 | |
2 | Type-2 AGN do not show broad permitted lines in natural light; they are believed to be mostly obscured type-1 and will not be further considered here because they lack the diagnostics offered by the broad lines measurements. |
3 | We consider here only powerful jetted radio sources with radio-to-optical specific flux ratio as radio loud (RL). |
4 | Both FR-I and FR-II sources are characterized by extended radio emission. FR-Is, however, show lower radio surface brightness toward the outer extremities of the lobes, at variance with FR-II sources that are often described as “edge brightened”. According to the unification schemes [60], both classes are observed at relatively high inclination. Their optical spectra can be of both type 1 and type 2 AGN. |
5 | http://servo.aob.rs/FeII_AGN/ (accessed on 30 November 2021). |
6 | http://servo.aob.rs/FeII_AGN/uploads.php (accessed on 30 November 2021). |
7 | I Zw 1 is however not a very extreme object: the most extreme accretors show spectra similar to the one of PHL 1092 [86]. |
8 | https://tools.ssdc.asi.it/SED/ (accessed on 30 November 2021). |
9 |
References
- Netzer, H. AGN emission lines. In Active Galactic Nuclei; Blandford, R.D., Netzer, H., Woltjer, L., Courvoisier, T.J.-L., Mayor, M., Eds.; Springer: Berlin, Germany, 1990; pp. 57–160. [Google Scholar]
- Peterson, B.M. An Introduction to Active Galactic Nuclei; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Mill Valley, CA, USA, 2006. [Google Scholar]
- Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. Astrophys. J. Suppl. Ser. 1992, 80, 109. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Zwitter, T.; Dultzin-Hacyan, D.; Calvani, M. Searching for the Physical Drivers of the Eigenvector 1 Correlation Space. Astrophys. J. 2001, 558, 553–560. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskell, C.M. Galactic mergers, starburst galaxies, quasar activity and massive binary black holes. Nature 1985, 315, 386. [Google Scholar] [CrossRef]
- Sulentic, J.; Marziani, P. Quasars in the 4D Eigenvector 1 Context: A stroll down memory lane. Front. Astron. Space Sci. 2015, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Marziani, P.; Zamanov, R.; Bachev, R.; Calvani, M.; Dultzin-Hacyan, D. Average Quasar Spectra in the Context of Eigenvector 1. Astrophys. J. Lett. 2002, 566, L71–L75. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Zamfir, S.; Marziani, P.; Dultzin, D. Our Search for an H-R Diagram of Quasars. In Revista Mexicana de Astronomia y Astrofisica Conference Series; 2008; Volume 32, pp. 51–58. Available online: https://arxiv.org/abs/0709.2499v1 (accessed on 30 November 2021).
- Fraix-Burnet, D.; Marziani, P.; D’Onofrio, M.; Dultzin, D. The Phylogeny of Quasars and the Ontogeny of Their Central Black Holes. Front. Astron. Space Sci. 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Leighly, K.M.; Moore, J.R. Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. I. Data and Analysis. Astrophys. J. 2004, 611, 107–124. [Google Scholar] [CrossRef]
- Richards, G.T.; Kruczek, N.E.; Gallagher, S.C.; Hall, P.B.; Hewett, P.C.; Leighly, K.M.; Deo, R.P.; Kratzer, R.M.; Shen, Y. Unification of Luminous Type 1 Quasars through C IV Emission. Astron. J. 2011, 141, 167. [Google Scholar] [CrossRef]
- Coatman, L.; Hewett, P.C.; Banerji, M.; Richards, G.T. C iv emission-line properties and systematic trends in quasar black hole mass estimates. Mon. Not. R. Astron. Soc. 2016, 461, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Martínez Carballo, M.A.; Sulentic, J.W.; Del Olmo, A.; Stirpe, G.M.; Dultzin, D. The most powerful quasar outflows as revealed by the Civ λ1549 resonance line. Astrophys. Space Sci. 2016, 361, 29. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; del Olmo, A.; Marziani, P.; Martínez-Carballo, M.A.; D’Onofrio, M.; Dultzin, D.; Perea, J.; Martínez-Aldama, M.L.; Negrete, C.A.; Stirpe, G.M.; et al. What does CIVλ1549 tell us about the physical driver of the Eigenvector quasar sequence? Astron. Astrophys. 2017, 608, A122. [Google Scholar] [CrossRef] [Green Version]
- Vietri, G.; Piconcelli, E.; Bischetti, M.; Duras, F.; Martocchia, S.; Bongiorno, A.; Marconi, A.; Zappacosta, L.; Bisogni, S.; Bruni, G.; et al. The WISSH quasars project. IV. Broad line region versus kiloparsec-scale winds. Astron. Astrophys. 2018, 617, A81. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Zamanov, R.K.; Sulentic, J.W.; Calvani, M. Searching for the physical drivers of eigenvector 1: Influence of black hole mass and Eddington ratio. Mon. Not. R. Astron. Soc. 2003, 345, 1133–1144. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Stirpe, G.M.; Zamfir, S.; Calvani, M. VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars. III. Hβ broad-line profile analysis and inferences about BLR structure. Astron. Astrophys. 2009, 495, 83–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Du, P.; Brotherton, M.S.; Hu, C.; Songsheng, Y.Y.; Li, Y.R.; Shi, Y.; Zhang, Z.X. Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei. Nat. Astron. 2017, 1, 775–783. [Google Scholar] [CrossRef]
- Corbin, M.R. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? Astrophys. J. 1995, 447, 496. [Google Scholar] [CrossRef]
- Popovic, L.C.; Vince, I.; Atanackovic-Vukmanovic, O.; Kubicela, A. Contribution of gravitational redshift to spectral line profiles of Seyfert galaxies and quasars. Astron. Astrophys. 1995, 293, 309–314. [Google Scholar]
- Zheng, W.; Sulentic, J.W. Internal Redshift Difference and Central Mass in QSOs. Astrophys. J. 1990, 350, 512. [Google Scholar] [CrossRef]
- Bon, N.; Bon, E.; Marziani, P.; Jovanović, P. Gravitational redshift of emission lines in the AGN spectra. Astrophys. Space Sci. 2015, 360, 7. [Google Scholar] [CrossRef] [Green Version]
- Punsly, B.; Marziani, P.; Berton, M.; Kharb, P. The Extreme Red Excess in Blazar Ultraviolet Broad Emission Lines. Astrophys. J. 2020, 903, 44. [Google Scholar] [CrossRef]
- Marinello, A.O.M.; Rodriguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T.A.A.; Pradhan, A.K. The FeII emission in active galactic nuclei: Excitation mechanisms and location of the emitting region. Astrophys. J. 2016, 820, 116. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Is Mg II 2800 a Reliable Virial Broadening Estimator for Quasars? Astron. Astrophys. 2013, 555, A89. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Zamfir, S.; Bachev, R. Broad-line region physical conditions along the quasar eigenvector 1 sequence. Mon. Not. R. Astron. Soc. 2010, 409, 1033–1048. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.E. A spectrophotometric classification of low-redshift quasars and active galactic nuclei. Astrophys. J. 1981, 250, 469–477. [Google Scholar] [CrossRef]
- Boller, T.; Brandt, W.N.; Fink, H. Soft X-ray properties of narrow-line Seyfert 1 galaxies. Astron. Astrophys. 1996, 305, 53. [Google Scholar]
- Wang, T.; Brinkmann, W.; Bergeron, J. X-ray properties of active galactic nuclei with optical FeII emission. Astron. Astrophys. 1996, 309, 81–96. [Google Scholar]
- Sulentic, J.W.; Marziani, P.; Zwitter, T.; Dultzin-Hacyan, D.; Calvani, M. The Demise of the Classical Broad-Line Region in the Luminous Quasar PG 1416-129. Astrophys. J. Lett. 2000, 545, L15–L18. [Google Scholar] [CrossRef]
- Grupe, D.; Thomas, H.C.; Beuermann, K. X-ray variability in a complete sample of Soft X-ray selected AGN. Astron. Astrophys. 2001, 367, 470–486. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Marziani, P.; Czerny, B. FeII emission in NLS1s—Originating from denser regions with higher abundances? IAU Symp. 2021, 356, 77–81. [Google Scholar] [CrossRef]
- Panda, S.; Małek, K.; Śniegowska, M.; Czerny, B. Strong FeII emission in NLS1s: An unsolved mystery. In Panchromatic Modelling with Next Generation Facilities; Boquien, M., Lusso, E., Gruppioni, C., Tissera, P., Eds.; Cambridge University Press: Cambridge, UK, 2020; Volume 341, pp. 297–298. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. FeII strength in NLS1s—Dependence on the viewing angle and FWHM(Hβ). IAU Symp. 2021, 356, 332–334. [Google Scholar] [CrossRef]
- Joly, M.; Véron-Cetty, M.; Véron, P. Fe II emission in AGN. In Revista Mexicana de Astronomia y Astrofisica Conference Series; 2008; Volume 32, pp. 59–61. Available online: https://www.redalyc.org/pdf/571/57103222.pdf (accessed on 30 November 2021).
- Barth, A.J.; Pancoast, A.; Bennert, V.N.; Brewer, B.J.; Canalizo, G.; Filippenko, A.V.; Gates, E.L.; Greene, J.E.; Li, W.; Malkan, M.A.; et al. The Lick AGN Monitoring Project 2011: Fe II Reverberation from the Outer Broad-line Region. Astrophys. J. 2013, 769, 128. [Google Scholar] [CrossRef]
- Du, P.; Zhang, Z.X.; Wang, K.; Huang, Y.K.; Zhang, Y.; Lu, K.X.; Hu, C.; Li, Y.R.; Bai, J.M.; Bian, W.H.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags. Astrophys. J. 2018, 856, 6. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Zamfir, S.; Marziani, P.; Bachev, R.; Calvani, M.; Dultzin-Hacyan, D. Radio-loud Active Galactic Nuclei in the Context of the Eigenvector 1 Parameter Space. Astrophys. J. Lett. 2003, 597, L17–L20. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P. New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space. Mon. Not. R. Astron. Soc. 2008, 387, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Bonzini, M.; Mainieri, V.; Padovani, P.; Andreani, P.; Berta, S.; Bethermin, M.; Lutz, D.; Rodighiero, G.; Rosario, D.; Tozzi, P.; et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 2015, 453, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Caccianiga, A.; Antón, S.; Ballo, L.; Foschini, L.; Maccacaro, T.; Della Ceca, R.; Severgnini, P.; Marchã, M.J.; Mateos, S.; Sani, E. WISE colours and star formation in the host galaxies of radio-loud narrow-line Seyfert 1. Mon. Not. R. Astron. Soc. 2015, 451, 1795–1805. [Google Scholar] [CrossRef]
- Ganci, V.; Marziani, P.; D’Onofrio, M.; del Olmo, A.; Bon, E.; Bon, N.; Negrete, C.A. Radio loudness along the quasar main sequence. Astron. Astrophys. 2019, 630, A110. [Google Scholar] [CrossRef]
- Osterbrock, D.E. Spectrophotometry of Seyfert 1 galaxies. Astrophys. J. 1977, 215, 733–745. [Google Scholar] [CrossRef]
- Miley, G.K.; Miller, J.S. Relations between the emission spectra and radio structures of quasars. Astrophys. J. 1979, 228, L55–L58. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.M. Permitted fe II Emission in Seyfert 1 Galaxies and QSOs I. Observations. Astrophys. J. Suppl. Ser. 1978, 38, 187. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Nahar, S.N. Atomic Astrophysics and Spectroscopy; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Verner, E.M.; Verner, D.A.; Korista, K.T.; Ferguson, J.W.; Hamann, F.; Ferland, G.J. Numerical Simulations of Fe II Emission Spectra. Astrophys. J. Suppl. Ser. 1999, 120, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Verner, E.; Bruhweiler, F.; Verner, D.; Johansson, S.; Kallman, T.; Gull, T. Fe II Diagnostic Tools for Quasars. Astrophys. J. 2004, 611, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Sigut, T.A.A.; Pradhan, A.K. Ly alpha Flourescent Excitation of Fe II in Active Galactic Nuclei. Astrophys. J. Lett. 1998, 499, L139. [Google Scholar] [CrossRef] [Green Version]
- Sigut, T.A.A.; Pradhan, A.K. Predicted Fe II Emission-Line Strengths from Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 2003, 145, 15–37. [Google Scholar] [CrossRef]
- Phillips, M.M. Permitted Fe II emission in Seyfert 1 galaxies and QSOs. II—The excitation mechanism. Astrophys. J. 1978, 226, 736–752. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Low-Ionization Outflows in High Eddington Ratio Quasars. Astrophys. J. 2013, 764, 150. [Google Scholar] [CrossRef] [Green Version]
- De Young, D.S. The Physics of Extragalactic Radio Sources; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Kembhavi, A.K.; Narlikar, J.V. Quasars and Active Galactic Nuclei: An Introduction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Komossa, S.; Voges, W.; Xu, D.; Mathur, S.; Adorf, H.M.; Lemson, G.; Duschl, W.J.; Grupe, D. Radio-loud Narrow-Line Type 1 Quasars. Astron. J. 2006, 132, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample. Astrophys. J. Suppl. Ser. 2006, 166, 128–153. [Google Scholar] [CrossRef] [Green Version]
- Antón, S.; Browne, I.W.A.; Marchã, M.J. The colour of the narrow line Sy1-blazar 0324+3410. Astron. Astrophys. 2008, 490, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Kynoch, D.; Landt, H.; Ward, M.J.; Done, C.; Gardner, E.; Boisson, C.; Arrieta-Lobo, M.; Zech, A.; Steenbrugge, K.; Pereira Santaella, M. The relativistic jet of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342. Mon. Not. R. Astron. Soc. 2018, 475, 404–423. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; Bastieri, D.; et al. Fermi/Large Area Telescope Bright Gamma-Ray Source List. Astrophys. J. Suppl. Ser. 2009, 183, 46–66. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef] [Green Version]
- Peacock, J.A.; Wall, J.V. Bright extragalactic radio sources at 2.7 GHz- II. Observations with the Cambridge 5-km telescope. Mon. Not. R. Astron. Soc. 1982, 198, 843–860. [Google Scholar] [CrossRef] [Green Version]
- Berton, M.; Foschini, L.; Caccianiga, A.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P. An orientation-based unification of young jetted active galactic nuclei: The case of 3C 286. Front. Astron. Space Sci. 2017, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Komossa, S. Spectroscopic classification, variability, and SED of the Fermi-detected CSS 3C 286: The radio-loudest NLS1 galaxy? Mon. Not. R. Astron. Soc. 2021, 501, 1384–1393. [Google Scholar] [CrossRef]
- Oshlack, A.Y.K.N.; Webster, R.L.; Whiting, M.T. A Very Radio Loud Narrow-Line Seyfert 1: PKS 2004-447. Astrophys. J. 2001, 558, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Gallo, L.C.; Edwards, P.G.; Ferrero, E.; Kataoka, J.; Lewis, D.R.; Ellingsen, S.P.; Misanovic, Z.; Welsh, W.F.; Whiting, M.; Boller, T.; et al. The spectral energy distribution of PKS 2004-447: A compact steep-spectrum source and possible radio-loud narrow-line Seyfert 1 galaxy. Mon. Not. R. Astron. Soc. 2006, 370, 245–254. [Google Scholar] [CrossRef]
- Berton, M.; Peluso, G.; Marziani, P.; Komossa, S.; Foschini, L.; Ciroi, S.; Chen, S.; Congiu, E.; Gallo, L.C.; Björklund, I.; et al. Hunting for the nature of the enigmatic narrow-line Seyfert 1 galaxy PKS 2004-447. arXiv 2021, arXiv:2106.12536. [Google Scholar] [CrossRef]
- Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B.M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; et al. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2015, 575, A13. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Martínez-Carballo, M.A.; Marziani, P.; del Olmo, A.; Stirpe, G.M.; Zamfir, S.; Plauchu-Frayn, I. 3C 57 as an atypical radio-loud quasar: Implications for the radio-loud/radio-quiet dichotomy. Mon. Not. R. Astron. Soc. 2015, 450, 1916–1925. [Google Scholar] [CrossRef] [Green Version]
- Negrete, C.A.; Dultzin, D.; Marziani, P.; Esparza, D.; Sulentic, J.W.; del Olmo, A.; Martínez-Aldama, M.L.; García López, A.; D’Onofrio, M.; Bon, N.; et al. Highly accreting quasars: The SDSS low-redshift catalog. Astron. Astrophys. 2018, 620, A118. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; del Olmo, A.; Martinez-Carballo, M.A.; Martinez-Aldama, M.L.; Stirpe, G.M.; Negrete, C.A.; Dultzin, D.; D’ Onofrio, M.; Bon, E.; Bon, N. Black hole mass estimates in quasars—A comparative analysis of high- and low-ionisation lines. arXiv 2019, arXiv:1905.00617. [Google Scholar]
- Wolf, J.; Salvato, M.; Coffey, D.; Merloni, A.; Buchner, J.; Arcodia, R.; Baron, D.; Carrera, F.J.; Comparat, J.; Schneider, D.P.; et al. Exploring the diversity of Type 1 active galactic nuclei identified in SDSS-IV/SPIDERS. Mon. Not. R. Astron. Soc. 2020, 492, 3580–3601. [Google Scholar] [CrossRef]
- Kovačević, J.; Popović, L.Č.; Dimitrijević, M.S. Analysis of Optical Fe II Emission in a Sample of Active Galactic Nucleus Spectra. Astrophys. J. Suppl. Ser. 2010, 189, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Kovačević-Dojčinović, J.; Popović, L.Č. The Connections Between the UV and Optical Fe ii Emission Lines in Type 1 AGNs. Astrophys. J. Suppl. Ser. 2015, 221, 35. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M. Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 1996, 104, 37. [Google Scholar] [CrossRef]
- Punsly, B. The Redshifted Excess in Quasar C IV Broad Emission Lines. Astrophys. J. 2010, 713, 232–238. [Google Scholar] [CrossRef]
- Moore, C.E. A Multiplet Table of Astrophysical Interest. Revised Edition. Part I—Table of Multiplets. Contrib. Princet. Univ. Obs. 1945, 20, 1–110. [Google Scholar]
- Kriss, G. Fitting Models to UV and Optical Spectral Data. Astron. Data Anal. Softw. Syst. III 1994, 61, 437. [Google Scholar]
- Gaskell, C.M. The case for cases B and C: Intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes. Mon. Not. R. Astron. Soc. 2017, 467, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Baskin, A.; Laor, A. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei. Mon. Not. R. Astron. Soc. 2018, 474, 1970–1994. [Google Scholar] [CrossRef] [Green Version]
- Marinello, M.; Overzier, R.A.; Röttgering, H.J.A.; Kurk, J.D.; De Breuck, C.; Vernet, J.; Wylezalek, D.; Stern, D.; Duncan, K.J.; Hatch, N.; et al. VLT/SINFONI study of black hole growth in high-redshift radio-loud quasars from the CARLA survey. Mon. Not. R. Astron. Soc. 2020, 492, 1991–2016. [Google Scholar] [CrossRef]
- Davidson, K.; Netzer, H. The emission lines of quasars and similar objects. Rev. Mod. Phys. 1979, 51, 715–766. [Google Scholar] [CrossRef]
- Laor, A.; Fiore, F.; Elvis, M.; Wilkes, B.J.; McDowell, J.C. The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results. Astrophys. J. 1997, 477, 93. [Google Scholar] [CrossRef]
- Korista, K.; Baldwin, J.; Ferland, G.; Verner, D. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines. Astrophys. J. Suppl. Ser. 1997, 108, 401. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.M. Space Telescope and Optical Reverberation Mapping Project: A Leap Forward in Reverberation Mapping. In IAU Symposium; Cambridge University Press: Cambridge, UK, 2017; Volume 324, pp. 215–218. [Google Scholar] [CrossRef] [Green Version]
- Collin-Souffrin, S.; Dumont, A.M. Emission spectra of weakly photoionized media in active nuclei of galaxies. Astron. Astrophys. 1989, 213, 29–48. [Google Scholar]
- Collin, S.; Joly, M. The Fe II problem in NLS1s. New Astron. Rev. 2000, 44, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, Y.; Kawara, K.; Oyabu, S. Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines. Astrophys. J. 2008, 673, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Aldama, M.L.; Dultzin, D.; Marziani, P.; Sulentic, J.W.; Bressan, A.; Chen, Y.; Stirpe, G.M. O I and Ca II Observations in Intermediate Redshift Quasars. Astrophys. J. Suppl. Ser. 2015, 217, 3. [Google Scholar] [CrossRef] [Green Version]
- Śniegowska, M.; Marziani, P.; Czerny, B.; Panda, S.; Martínez-Aldama, M.L.; del Olmo, A.; D’Onofrio, M. High Metal Content of Highly Accreting Quasars. Astrophys. J. 2021, 910, 115. [Google Scholar] [CrossRef]
- Bentz, M.C.; Denney, K.D.; Grier, C.J.; Barth, A.J.; Peterson, B.M.; Vestergaard, M.; Bennert, V.N.; Canalizo, G.; De Rosa, G.; Filippenko, A.V.; et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. Astrophys. J. 2013, 767, 149. [Google Scholar] [CrossRef]
- Martínez-Aldama, M.L.; Czerny, B.; Kawka, D.; Karas, V.; Panda, S.; Zajaček, M.; Życki, P.T. Can Reverberation-measured Quasars Be Used for Cosmology? Astrophys. J. 2019, 883, 170. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Wang, J.M. The Radius-Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei. Astrophys. J. 2019, 886, 42. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, M.; Marziani, P.; Chiosi, C. Past, present and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. arXiv 2021, arXiv:2109.06301. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martinez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. arXiv 2018, arXiv:180205575M. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Marziani, P.; Del Olmo, A.; Zamfir, S. Balmer line shifts in quasars. Astrophys. Space Sci. 2016, 361, 55. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Bachev, R.; Marziani, P.; Negrete, C.A.; Dultzin, D. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. Astrophys. J. 2007, 666, 757–777. [Google Scholar] [CrossRef] [Green Version]
- Laor, A.; Jannuzi, B.T.; Green, R.F.; Boroson, T.A. The Ultraviolet Properties of the Narrow-Line Quasar I ZW 1. Astrophys. J. 1997, 489, 656. [Google Scholar] [CrossRef] [Green Version]
- Kozieł-Wierzbowska, D.; Vale Asari, N.; Stasińska, G.; Sikora, M.; Goettems, E.I.; Wójtowicz, A. What Distinguishes the Host Galaxies of Radio-loud and Radio-quiet AGNs? Astrophys. J. 2017, 846, 42. [Google Scholar] [CrossRef] [Green Version]
- Kozieł-Wierzbowska, D.; Stasińska, G.; Vale Asari, N.; Sikora, M.; Goettems, E.; Wójtowicz, A. Pair-matching of radio-loud and radio-quiet AGNs. Front. Astron. Space Sci. 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Järvelä, E.; Lähteenmäki, A.; Berton, M. Near-infrared morphologies of the host galaxies of narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2018, 619, A69. [Google Scholar] [CrossRef] [Green Version]
- Berton, M.; Congiu, E.; Ciroi, S.; Komossa, S.; Frezzato, M.; Di Mille, F.; Antón, S.; Antonucci, R.; Caccianiga, A.; Coppi, P.; et al. The Interacting Late-type Host Galaxy of the Radio-loud Narrow-line Seyfert 1 IRAS 20181-2244. Astron. J. 2019, 157, 48. [Google Scholar] [CrossRef] [Green Version]
- Olguín-Iglesias, A.; Kotilainen, J.; Chavushyan, V. The disc-like host galaxies of radio-loud narrow-line Seyfert 1s. Mon. Not. R. Astron. Soc. 2020, 492, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Woo, J.H.; Nagao, T.; Kim, S.C. The Chemical Properties of Low-redshift QSOs. Astrophys. J. 2013, 763, 58. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Marziani, P.; del Olmo, A.; Dultzin, D.; Perea, J.; Alenka Negrete, C. GTC spectra of z ≈ 2.3 quasars: Comparison with local luminosity analogs. Astron. Astrophys. 2014, 570, A96. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Maiolino, R.; Marconi, A. Gas metallicity in the narrow-line regions of high-redshift active galactic nuclei. Astron. Astrophys. 2006, 447, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W. Evidence for a very broad line region in PG 1138+222. Astrophys. J. 1993, 409, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shen, Y. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties. Astrophys. J. Lett. 2015, 804, L15. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Wang, J.M.; Hu, C.; Ho, L.C.; Li, Y.R.; Bai, J.M. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei. Astrophys. J. Lett. 2016, 818, L14. [Google Scholar] [CrossRef] [Green Version]
Spectrum | W(Feii4570) | FWHM H | ST | k | |
---|---|---|---|---|---|
Composite spectra | |||||
A1 RQ | 31.6 | 0.291 | 3230 | A1 | … |
A1 CD | 16.2 | 0.397 | 3290 | A1 | 1.815 |
B1 RQ | 44.1 | 0.414 | 6940 | B1 | … |
B1 CD | 26.0 | 0.281 | 7060 | B1 | 1.657 |
B1 FR-II | 21.5 | 0.184 | 6790 | B1 | 1.900 |
Feii template | … | … | 990 | A | … |
RL NLSy1s | |||||
1H 0323+342 | 50.1 | 1.03 | 1280 | A3 | … |
3C 286 | 33.5 | 0.792 | 3170 | A2 | … |
PKS 2004-447 | 36.7 | 0.5455 | 1470 | A2 | … |
Spectrum | ||||||
---|---|---|---|---|---|---|
Composite spectra | ||||||
A1 RQ | 0.00146 ± 0.00942 | 0.00257 ± 0.01333 | … | … | … | … |
A1 CD | 0.00014 ± 0.01265 | −0.00117 ± 0.01671 | 0.00244 | −9.986 | 0.0146 | −0.00354 |
B1 RQ | 0.00149 ± 0.00665 | 0.00277 ± 0.00982 | … | … | … | … |
B1 CD | −0.00188 ± 0.01698 | 9.44 ± 0.01745 | 0.01420 | 0.07467 | −0.00403 | −0.02626 |
B1 FR−II | 0.00297 ± 0.01554 | 0.0047± 0.01574 | 0.03138 | 0.15740 | −0.00294 | −0.01834 |
RL NLSy1s | ||||||
1H 0323+342 | 0.00509 ± 0.05126 | 0.00949 ± 0.04280 | −0.00598 | −0.0388 | 0.02072 | 0.1297 |
3C 286 | −0.00262 ± 0.03654 | 0.005087 ± 0.05126 | −0.00304 | −0.0254 | 0.00516 | 0.0475 |
PKS 2004−447 | −0.00145 ± 0.02275 | 0.005514 ± 0.02115 | −0.0008 | −0.0149 | 0.00866 | 0.1117 |
Spectrum | B/R | |||||
---|---|---|---|---|---|---|
Composite spectra | ||||||
A1 RQ | 0.993 | 0.994 | 0.82 | 0.974 | 0.00447 | −0.0182 |
A1 CD | 1.141 | 1.045 | 0.72 | 0.942 | 0.0117 | 0.0075 |
B1 RQ | 0.884 | 0.891 | 0.97 | 0.899 | 0.00934 | 0.00419 |
B1 CD | 0.666 | 0.698 | 0.79 | 0.699 | −0.0375 | −0.0198 |
B1 FR−II | 0.685 | 0.726 | 0.65 | 0.890 | −0.051 | −0.0169 |
Feii template | 0.792 | 0.979 | 0.65 | 0.967 | 0.00264 | 0.00813 |
RL NLSy1s | ||||||
1H 0323+342 | 0.743 | 0.780 | 0.59 | 0.765 | 0.0048 | −0.00020 |
3C 286 | 0.821 | 0.905 | 0.78 | 0.867 | 0.00591 | −0.00218 |
PKS 2004-447 | 0.980 | 0.882 | 0.62 | 0.882 | 0.00093 | −0.0000466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marziani, P.; Berton, M.; Panda, S.; Bon, E. Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei. Universe 2021, 7, 484. https://doi.org/10.3390/universe7120484
Marziani P, Berton M, Panda S, Bon E. Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei. Universe. 2021; 7(12):484. https://doi.org/10.3390/universe7120484
Chicago/Turabian StyleMarziani, Paola, Marco Berton, Swayamtrupta Panda, and Edi Bon. 2021. "Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei" Universe 7, no. 12: 484. https://doi.org/10.3390/universe7120484
APA StyleMarziani, P., Berton, M., Panda, S., & Bon, E. (2021). Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei. Universe, 7(12), 484. https://doi.org/10.3390/universe7120484