Renormalizability of Alternative Theories of Gravity: Differences between Power Counting and Entropy Argument
Abstract
:1. Introduction
2. A Summary of Extended and Modified Theories of Gravity
3. Spherical Symmetry
3.1. Gravity
3.2. Gravity
3.3. Teleparallel Gravity
3.4. Horava–Lifshitz Gravity
4. Power-Counting Analysis
5. Renormalizability via the Bekenstein–Hawking Entropy Argument
5.1. The Case
5.2. The Case
5.3. The Teleparallel Case
5.4. The Horava–Lifshitz Case
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. Ultraviolet Divergencies in Quantum Theories of Gravitation, General Relativity, an Einstein Centenary Survey; Hawking, S., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Niedermaier, M. The Asymptotic safety scenario in quantum gravity: An Introduction. Class. Quant. Grav. 2007, 24, R171–R230. [Google Scholar] [CrossRef]
- Reuter, M.; Saueressig, F. Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Bonanno, A.; Saueressig, F. Asymptotically safe cosmology? A status report. Comptes Rendus Phys. 2017, 18, 254. [Google Scholar] [CrossRef]
- Bonanno, A. An effective action for asymptotically safe gravity. Phys. Rev. D 2012, 85, 081503. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, S.; Odintsov, S.D. Gauge dependence of the effective average action in Einstein gravity. Int. J. Mod. Phys. A 1998, 13, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Shomer, A. A Pedagogical explanation for the non-renormalizability of gravity. arXiv 2007, arXiv:0709.3555. [Google Scholar]
- Aharony, O.; Banks, T. Note on the quantum mechanics of M theory. J. High Energy Phys. 1999, 03, 016. [Google Scholar] [CrossRef] [Green Version]
- Doboszewski, J.; Linnemann, N. How not to establish the non-renormalizability of gravity. Found. Phys. 2018, 48, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Sen, A. Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions. J. High Energy Phys. 2013, 04, 156. [Google Scholar] [CrossRef] [Green Version]
- Bytsenko, A.A.; Tureanu, A. Quantum Corrections to Bekenstein–Hawking Black Hole Entropy and Gravity Partition Functions. Nucl. Phys. B 2013, 873, 534–549. [Google Scholar] [CrossRef] [Green Version]
- Shankaranarayanan, S. Corrections to Bekenstein-Hawking Entropy– Quantum or not-so Quantum? Entropy 2011, 13, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Vagenas, E.C. Semiclassical corrections to the Bekenstein–Hawking entropy of the BTZ black hole via selfgravitation. Phys. Lett. B 2002, 533, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Marciu, M.; Rudra, P. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term. J. Cosmol. Astropart. Phys. 2018, 04, 056. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Azeem, S. Cosmological Evolution for Dark Energy Models in f(T) Gravity. Astrophys. Space Sci. 2012, 342, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Laurentis, M.D. The dark matter problem from f(R) gravity viewpoint. Annalen Phys. 2012, 524, 545–578. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. eConf C 2006, 0602061, 06. [Google Scholar] [CrossRef] [Green Version]
- Bajardi, F.; Vernieri, D.; Capozziello, S. Bouncing Cosmology in f(Q) Symmetric Teleparallel Gravity. Eur. Phys. J. Plus 2020, 135, 912. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified non-local-F(R) gravity as the key for the inflation and dark energy. Phys. Lett. B 2008, 659, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Sáez-Chillón Gómez, D. Inflation in mimetic f(G) gravity. Symmetry 2018, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- De Laurentis, M. Cosmological double inflation in F(R, G) gravity. In Proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes), Rome, Italy, 12–18 July 2015; Volume 2, pp. 1141–1146. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Capozziello, S.; Pryer, D. Gravitational Effective Action at Second Order in Curvature and Gravitational Waves. Eur. Phys. J. C 2017, 77, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozziello, S.; Stabile, A. Gravitational waves in fourth order gravity. Astrophys. Space Sci. 2015, 358, 27. [Google Scholar] [CrossRef]
- Capozziello, S.; Bajardi, F. Gravitational waves in modified gravity. Int. J. Mod. Phys. D 2019, 28, 1942002. [Google Scholar] [CrossRef]
- Laurentis, M.D.; Lopez-Revelles, A.J. Newtonian, Post Newtonian and Parameterized Post Newtonian limits of f(R, G) gravity. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450082. [Google Scholar] [CrossRef] [Green Version]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Altucci, C.; Bajardi, F.; Basti, A.; Beverini, N.; Carelli, G.; Ciampini, D.; Di, A.D.V.; Fuso, F.; Giacomelli, U.; et al. Constraining Theories of Gravity by GINGER experiment. Eur. Phys. J. Plus 2021, 136, 394. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Renormalization and unitarity in higher derivative and nonlocal gravity theories. Mod. Phys. Lett. A 2015, 30, 1540005. [Google Scholar] [CrossRef]
- Sanyal, A.K.; Modak, B.; Rubano, C.; Piedipalumbo, E. Noether symmetry in the higher order gravity theory. Gen. Rel. Grav. 2005, 37, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, S.D. Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology. Eur. Phys. J. C 2012, 72, 2068. [Google Scholar] [CrossRef]
- Bajardi, F.; Capozziello, S. f(G) Noether cosmology. Eur. Phys. J. C 2020, 80, 704. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Pozdeeva, E.O.; Vernov, S.Y. De Sitter and power-law solutions in non-local Gauss–Bonnet gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850188. [Google Scholar] [CrossRef]
- Benetti, M.; Santos da Costa, S.; Capozziello, S.; Alcaniz, J.S.; De Laurentis, M. Observational constraints on Gauss–Bonnet cosmology. Int. J. Mod. Phys. D 2018, 27, 1850084. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.C.; Mukherjee, S. Higher dimensional cosmology with Gauss–Bonnet terms and the cosmological constant problem. Phys. Rev. D 1990, 42, 2595–2600. [Google Scholar] [CrossRef] [PubMed]
- Bajardi, F.; Capozziello, S.; Vernieri, D. Non-local curvature and Gauss–Bonnet cosmologies by Noether symmetries. Eur. Phys. J. Plus 2020, 135, 942. [Google Scholar] [CrossRef]
- Arcos, H.I.; Pereira, J.G. Torsion gravity: A Reappraisal. Int. J. Mod. Phys. D 2004, 13, 2193–2240. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013; Volume 173. [Google Scholar]
- Setare, M.R.; Mohammadipour, N. Can f(T) gravity theories mimic ΛCDM cosmic history. J. Cosmol. Astropart. Phys. 2013, 01, 015. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R. Observational information for f(T) theories and Dark Torsion. Phys. Lett. B 2011, 695, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Bajardi, F.; Capozziello, S. Noether Symmetries and Quantum Cosmology in Extended Teleparallel Gravity. arXiv 2021, arXiv:2101.00432. [Google Scholar]
- Horava, P. Membranes at Quantum Criticality. J. High Energy Phys. 2009, 0903, 020. [Google Scholar] [CrossRef] [Green Version]
- Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef] [Green Version]
- Horava, P. Quantum Criticality and Yang-Mills Gauge Theory. Phys. Lett. B 2011, 694, 172. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Blas, D.; Herrero-Valea, M.; Sibiryakov, S.M.; Steinwachs, C.F. Renormalization of Hořava gravity. Phys. Rev. D 2016, 93, 064022. [Google Scholar] [CrossRef] [Green Version]
- Vernieri, D. On power-counting renormalizability of Hořava gravity with detailed balance. Phys. Rev. D 2015, 91, 124029. [Google Scholar] [CrossRef] [Green Version]
- Vernieri, D.; Sotiriou, T.P. Horava-Lifshitz Gravity: Detailed Balance Revisited. Phys. Rev. D 2012, 85, 064003. [Google Scholar] [CrossRef] [Green Version]
- Vernieri, D.; Sotiriou, T.P. Hořava-Lifshitz gravity with detailed balance. J. Phys. Conf. Ser. 2013, 453, 012022. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Kovacs, Z.; Lobo, F.S.N. Solar system tests of Horava–Lifshitz gravity. Proc. R. Soc. Lond. A 2011, 467, 1390. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Pujolas, O.; Sibiryakov, S. Consistent Extension of Horava Gravity. Phys. Rev. Lett. 2010, 104, 181302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiritsis, E.; Kofinas, G. Horava–Lifshitz Cosmology. Nucl. Phys. B 2009, 821, 467. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Cao, L.M.; Ohta, N. Topological Black Holes in Horava–Lifshitz Gravity. Phys. Rev. D 2009, 80, 024003. [Google Scholar] [CrossRef] [Green Version]
- Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 1963, 27, 636–651. [Google Scholar] [CrossRef]
- Myers, R.C.; Perry, M.J. Black Holes in Higher Dimensional Space-Times. Annals Phys. 1986, 172, 04. [Google Scholar] [CrossRef]
- Capozziello, S.; Frusciante, N.; Vernieri, D. New Spherically Symmetric Solutions in f(R)-gravity by Noether Symmetries. Gen. Rel. Grav. 2012, 44, 1881–1891. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Stabile, A.; Troisi, A. Spherically symmetric solutions in f(R)-gravity via Noether Symmetry Approach. Class. Quant. Grav. 2007, 24, 2153–2166. [Google Scholar] [CrossRef] [Green Version]
- Bajardi, F.; Dialektopoulos, K.F.; Capozziello, S. Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity. Symmetry 2020, 12, 372. [Google Scholar] [CrossRef] [Green Version]
- Tamanini, N.; Boehmer, C.G. Good and bad tetrads in f(T) gravity. Phys. Rev. D 2012, 86, 044009. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Spherically symmetric static spacetimes in vacuum f(T) gravity. Phys. Rev. D 2011, 84, 083518. [Google Scholar] [CrossRef] [Green Version]
- Wang, T. Static Solutions with Spherical Symmetry in f(T) Theories. Phys. Rev. D 2011, 84, 024042. [Google Scholar] [CrossRef] [Green Version]
- Daouda, M.H.; Rodrigues, M.E.; Houndjo, M.J.S. New Static Solutions in f(T) Theory. Eur. Phys. J. C 2011, 71, 1817. [Google Scholar] [CrossRef] [Green Version]
- Atazadeh, K.; Mousavi, M. Vacuum spherically symmetric solutions in f(T) gravity. Eur. Phys. J. C 2013, 73, 2272. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Schwarzschild solution in extended teleparallel gravity. EPL 2014, 105, 10001. [Google Scholar] [CrossRef] [Green Version]
- Aftergood, J.; DeBenedictis, A. Matter conditions for regular black holes in f(T) gravity. Phys. Rev. D 2014, 90, 124006. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. Exact spherically symmetric solutions in f(T) theory. Chin. Phys. Lett. 2012, 29, 050402. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. A spherically symmetric null tetrads in non-minimal torsion-matter coupling extension of f(T) gravity. Astrophys. Space Sci. 2015, 357, 157. [Google Scholar] [CrossRef]
- Kehagias, A.; Sfetsos, K. The Black hole and FRW geometries of non-relativistic gravity. Phys. Lett. B 2009, 678, 123. [Google Scholar] [CrossRef] [Green Version]
- Asorey, M.; Lopez, J.L.; Shapiro, I.L. Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 1997, 12, 5711–5734. [Google Scholar] [CrossRef] [Green Version]
- Steinwachs, C.F. Towards a unitary, renormalizable and ultraviolet-complete quantum theory of gravity. arXiv 2020, arXiv:2004.07842. [Google Scholar]
- Ruf, M.S.; Steinwachs, C.F. One-loop divergences for f(R) gravity. Phys. Rev. D 2018, 97, 044049. [Google Scholar] [CrossRef] [Green Version]
- Steinwachs, C.F.; Kamenshchik, A.Y. One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 2011, 84, 024026. [Google Scholar] [CrossRef] [Green Version]
- Ruf, M.S.; Steinwachs, C.F. Quantum equivalence of f(R) gravity and scalar-tensor theories. Phys. Rev. D 2018, 97, 044050. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Caso, L. Gravitational Waves in Higher Order Teleparallel Gravity. Class. Quant. Grav. 2020, 37, 235013. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Nojiri, S. Considerations on gravitational waves in higher-order local and non-local gravity. Phys. Lett. B 2020, 810, 135821. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Dialektopoulos, K.F. Noether symmetries in Gauss–Bonnet-teleparallel cosmology. Eur. Phys. J. C 2016, 76, 629. [Google Scholar] [CrossRef] [Green Version]
- Falls, K.; Litim, D.F. Black hole thermodynamics under the microscope. Phys. Rev. D 2014, 89, 084002. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajardi, F.; Bascone, F.; Capozziello, S. Renormalizability of Alternative Theories of Gravity: Differences between Power Counting and Entropy Argument. Universe 2021, 7, 148. https://doi.org/10.3390/universe7050148
Bajardi F, Bascone F, Capozziello S. Renormalizability of Alternative Theories of Gravity: Differences between Power Counting and Entropy Argument. Universe. 2021; 7(5):148. https://doi.org/10.3390/universe7050148
Chicago/Turabian StyleBajardi, Francesco, Francesco Bascone, and Salvatore Capozziello. 2021. "Renormalizability of Alternative Theories of Gravity: Differences between Power Counting and Entropy Argument" Universe 7, no. 5: 148. https://doi.org/10.3390/universe7050148
APA StyleBajardi, F., Bascone, F., & Capozziello, S. (2021). Renormalizability of Alternative Theories of Gravity: Differences between Power Counting and Entropy Argument. Universe, 7(5), 148. https://doi.org/10.3390/universe7050148