s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections
Abstract
:1. Introduction
2. Stellar Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Gallino, R.; Busso, M.; Chiefei, A.; Raiteri, C.M.; Limongi, M.; Salaris, M. Radiative 13C Burning in Asymptotic Giant Branch Stars and s-Processing. Astrophys. J. Lett. 1995, 440, L85. [Google Scholar] [CrossRef]
- Cristallo, S.; La Cognata, M.; Massimi, C.; Best, A.; Palmerini, S.; Straniero, O.; Trippella, O.; Busso, M.; Ciani, G.F.; Mingrone, F.; et al. The Importance of the 13C(α,n)16O Reaction in Asymptotic Giant Branch Stars. Astrophys. J. 2018, 859, 105. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F.; Bloecker, T.; Schoenberner, D.; El Eid, M. Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars. Astron. Astrophys. 1997, 324, L81–L84. [Google Scholar]
- Herwig, F.; Langer, N.; Lugaro, M. The s-Process in Rotating Asymptotic Giant Branch Stars. Astrophys. J. 2003, 593, 1056–1073. [Google Scholar] [CrossRef] [Green Version]
- Siess, L.; Goriely, S.; Langer, N. Nucleosynthesis of s-elements in rotating AGB stars. Astron. Astrophys. 2004, 415, 1089–1097. [Google Scholar] [CrossRef]
- Piersanti, L.; Cristallo, S.; Straniero, O. The Effects of Rotation on s-process Nucleosynthesis in Asymptotic Giant Branch Stars. Astrophys. J. 2013, 774, 98. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, Nucleosynthesis, and Yields of Low-Mass Asymptotic Giant Branch Stars at Different Metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Tout, C.A. Partial mixing and formation of the 13C pocket by internal gravity waves in asymptotic giant branch stars. Mon. Not. RAS 2003, 340, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J.W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; et al. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis. Astrophys. J. 2016, 827, 30. [Google Scholar] [CrossRef]
- Battino, U.; Tattersall, A.; Lederer-Woods, C.; Herwig, F.; Denissenkov, P.; Hirschi, R.; Trappitsch, R.; den Hartogh, J.W.; Pignatari, M.; NuGrid Collaboration. NuGrid stellar data set—III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Mon. Not. RAS 2019, 489, 1082–1098. [Google Scholar] [CrossRef]
- Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. s-Processing in AGB Stars Revisited. I. Does the Main Component Constrain the Neutron Source in the 13C Pocket? Astrophys. J. 2014, 787, 41. [Google Scholar] [CrossRef] [Green Version]
- Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M.C. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing. Astrophys. J. 2016, 818, 125. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, S.; Trippella, O.; Busso, M.; Vescovi, D.; Petrelli, M.; Zucchini, A.; Frondini, F. s-Processing from MHD-induced mixing and isotopic abundances in presolar SiC grains. Geochim. Cosmochim. Acta 2018, 221, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio Delogu, V. s-Processing in AGB Stars Revisited. III. Neutron captures from MHD mixing at different metallicities and observational constraints. arXiv 2020, arXiv:2011.07469. [Google Scholar]
- Vescovi, D.; Cristallo, S.; Busso, M.; Liu, N. Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains. Astrophys. J. Lett. 2020, 897, L25. [Google Scholar] [CrossRef]
- Vescovi, D.; Cristallo, S.; Palmerini, S.; Abia, C.; Busso, M. Magnetic-buoyancy-induced mixing in AGB Stars: Fluorine nucleosynthesis at different metallicities. arXiv 2021, arXiv:2106.08241. [Google Scholar]
- Magrini, L.; Vescovi, D.; Casali, G.; Cristallo, S.; Vazquez, C.V.; Cescutti, G.; Spina, L.; Der Swaelmen, M.V. Magnetic-buoyancy-induced mixing in AGB Stars: A theoretical explanation of the non-universal [Y/Mg]-age relation. arXiv 2021, arXiv:2101.04429. [Google Scholar]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–194. [Google Scholar] [CrossRef] [Green Version]
- Reifarth, R.; Erbacher, P.; Fiebiger, S.; Göbel, K.; Heftrich, T.; Heil, M.; Käppeler, F.; Klapper, N.; Kurtulgil, D.; Langer, C.; et al. Neutron-induced cross sections. From raw data to astrophysical rates. Eur. Phys. J. Plus 2018, 133, 424. [Google Scholar] [CrossRef]
- Lederer, C.; Colonna, N.; Domingo-Pardo, C.; Gunsing, F.; Käppeler, F.; Massimi, C.; Mengoni, A.; Wallner, A.; Abbondanno, U.; Aerts, G.; et al. Au197(n,γ) cross section in the unresolved resonance region. Phys. Rev. C 2011, 83, 034608. [Google Scholar] [CrossRef] [Green Version]
- Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; et al. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA. Eur. Phys. J. A 2014, 50, 124. [Google Scholar] [CrossRef] [Green Version]
- Ratynski, W.; Käppeler, F. Neutron capture cross section of 197Au: A standard for stellar nucleosynthesis. Phys. Rev. C 1988, 37, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Marigo, P.; Aringer, B. Low-temperature gas opacity. ÆSOPUS: A versatile and quick computational tool. Astron. Astrophys. 2009, 508, 1539–1569. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Lederer, M.T.; Aringer, B. Molecular Opacities for Low-Mass Metal-poor AGB Stars Undergoing the Third Dredge-up. Astrophys. J. 2007, 667, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Lodders, K. Solar Elemental Abundances. Oxf. Res. Encycl. Planet. Sci. 2020. [Google Scholar] [CrossRef]
- Vescovi, D.; Piersanti, L.; Cristallo, S.; Busso, M.; Vissani, F.; Palmerini, S.; Simonucci, S.; Taioli, S. Effects of a revised 7Be e−-capture rate on solar neutrino fluxes. Astron. Astrophys. 2019, 623, A126. [Google Scholar] [CrossRef] [Green Version]
- Abia, C.; de Laverny, P.; Cristallo, S.; Kordopatis, G.; Straniero, O. Properties of carbon stars in the solar neighbourhood based on Gaia DR2 astrometry. Astron. Astrophys. 2020, 633, A135. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Busso, M. Magnetohydrodynamics and Deep Mixing in Evolved Stars. I. Two- and Three-dimensional Analytical Models for the Asymptotic Giant Branch. Astrophys. J. 2014, 787, 141. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.Y.; Beer, H.; Käppeler, F.; Voss, F.; Wisshak, K.; Rauscher, T. Neutron Cross Sections for Nucleosynthesis Studies. At. Data Nucl. Data Tables 2000, 76, 70–154. [Google Scholar] [CrossRef] [Green Version]
- Mazzone, A.; Cristallo, S.; Aberle, O.; Alaerts, G.; Alcayne, V.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; Babiano-Suarez, V.; Bacak, M.; et al. Measurement of the 154Gd(n,γ) cross section and its astrophysical implications. Phys. Lett. B 2020, 804, 135405. [Google Scholar] [CrossRef]
- Roig, O.; Jandel, M.; Méot, V.; Bond, E.M.; Bredeweg, T.A.; Couture, A.J.; Haight, R.C.; Keksis, A.L.; Rundberg, R.S.; Ullmann, J.L.; et al. Radiative neutron capture cross sections on 176Lu at DANCE. Phys. Rev. C 2016, 93, 034602. [Google Scholar] [CrossRef] [Green Version]
- Wisshak, K.; Voss, F.; Käppeler, F.; Kazakov, L.; Bečvář, F.; Krtička, M.; Gallino, R.; Pignatari, M. Fast neutron capture on the Hf isotopes: Cross sections, isomer production, and stellar aspects. Phys. Rev. C 2006, 73, 045807. [Google Scholar] [CrossRef]
- Takahashi, K.; Yokoi, K. Beta-Decay Rates of Highly Ionized Heavy Atoms in Stellar Interiors. At. Data Nucl. Data Tables 1987, 36, 375. [Google Scholar] [CrossRef]
- Bisterzo, S.; Gallino, R.; Käppeler, F.; Wiescher, M.; Imbriani, G.; Straniero, O.; Cristallo, S.; Görres, J.; deBoer, R.J. The branchings of the main s-process: Their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. RAS 2015, 449, 506–527. [Google Scholar] [CrossRef] [Green Version]
- Vescovi, D.; Busso, M.; Palmerini, S.; Trippella, O.; Cristallo, S.; Piersanti, L.; Chieffi, A.; Limongi, M.; Hoppe, P.; Kratz, K.L. On the Origin of Early Solar System Radioactivities: Problems with the Asymptotic Giant Branch and Massive Star Scenarios. Astrophys. J. 2018, 863, 115. [Google Scholar] [CrossRef]
- Lugaro, M.; Heger, A.; Osrin, D.; Goriely, S.; Zuber, K.; Karakas, A.I.; Gibson, B.K.; Doherty, C.L.; Lattanzio, J.C.; Ott, U. Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 2014, 345, 650–653. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, V.; Berzins, J.; Prokofjevs, P.; Simonova, L.; von Egidy, T.; Honzátko, J.; Tomandl, I.; Alexa, P.; Wirth, H.F.; Köster, U.; et al. Interplay of quasiparticle and phonon excitations in 181Hf observed through (n,γ) and (<A>d→</A>,p) reactions. Nucl. Phys. A 2002, 709, 3–59. [Google Scholar] [CrossRef]
- Wasserburg, G.J.; Busso, M.; Gallino, R.; Nollett, K.M. Short-lived nuclei in the early Solar System: Possible AGB sources. Nucl. Phys. A 2006, 777, 5–69. [Google Scholar] [CrossRef] [Green Version]
- Côté, B.; Lugaro, M.; Reifarth, R.; Pignatari, M.; Világos, B.; Yagüe, A.; Gibson, B.K. Galactic Chemical Evolution of Radioactive Isotopes. Astrophys. J. 2019, 878, 156. [Google Scholar] [CrossRef] [Green Version]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Wisshak, K.; Voss, F.; Käppeler, F. Neutron capture resonances in 142Nd and 144Nd. Phys. Rev. C 1998, 57, 3452–3458. [Google Scholar] [CrossRef] [Green Version]
- Klay, N.; Käppeler, F.; Beer, H.; Schatz, G. Nuclear structure of 176Lu and its astrophysical consequences. II. 176Lu, a thermometer for stellar helium burning. Phys. Rev. C 1991, 44, 2839–2849. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Heil, M.; Winckler, N.; Dababneh, S.; Käppeler, F.; Wisshak, K.; Bisterzo, S.; Gallino, R.; Davis, A.M.; Rauscher, T. 176Lu/176Hf: A Sensitive Test of s-Process Temperature and Neutron Density in AGB Stars. Astrophys. J. 2008, 673, 434–444. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Gallino, R.; Straniero, O.; Käppeler, F.; Domínguez, I.; Mohr, P. The long-standing problem of 176Lu/176Hf branching: A new approach with full stellar evolutionary models. J. Phys. Conf. Ser. 2010, 202, 012033. [Google Scholar] [CrossRef]
- Zinner, E. 1.4—Presolar Grains. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 181–213. [Google Scholar] [CrossRef]
- Liu, N.; Savina, M.R.; Gallino, R.; Davis, A.M.; Bisterzo, S.; Gyngard, F.; Käppeler, F.; Cristallo, S.; Dauphas, N.; Pellin, M.J.; et al. Correlated Strontium and Barium Isotopic Compositions of Acid-cleaned Single Mainstream Silicon Carbides from Murchison. Astrophys. J. 2015, 803, 12. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, P.; Annen, P.; Strebel, R.; Eberhardt, P.; Gallino, R.; Lugaro, M.; Amari, S.; Lewis, R.S. Meteoritic Silicon Carbide Grains with Unusual Si Isotopic Compositions: Evidence for an Origin in Low-Mass, Low-Metallicity Asymptotic Giant Branch Stars. Astrophys. J. Lett. 1997, 487, L101–L104. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.M.; Lugaro, M.; Gibson, B.K.; Pilkington, K. Decoding the Message from Meteoritic Stardust Silicon Carbide Grains. Astrophys. J. Lett. 2013, 768, L19. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Cseh, B.; Világos, B.; Karakas, A.I.; Ventura, P.; Dell’Agli, F.; Trappitsch, R.; Hampel, M.; D’Orazi, V.; Pereira, C.B.; et al. Origin of Large Meteoritic SiC Stardust Grains in Metal-rich AGB Stars. Astrophys. J. 2020, 898, 96. [Google Scholar] [CrossRef]
- Cristallo, S.; Nanni, A.; Cescutti, G.; Minchev, I.; Liu, N.; Vescovi, D.; Gobrecht, D.; Piersanti, L. Mass and metallicity distribution of parent AGB stars of presolar SiC. Astron. Astrophys. 2020, 644, A8. [Google Scholar] [CrossRef]
- Gail, H.P.; Zhukovska, S.V.; Hoppe, P.; Trieloff, M. Stardust from Asymptotic Giant Branch Stars. Astrophys. J. 2009, 698, 1136–1154. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Stephan, T.; Cristallo, S.; Gallino, R.; Boehnke, P.; Nittler, L.R.; O’Alexander, C.M.D.; Davis, A.M.; Trappitsch, R.; Pellin, M.J.; et al. Presolar Silicon Carbide Grains of Types Y and Z: Their Molybdenum Isotopic Compositions and Stellar Origins. Astrophys. J. 2019, 881, 28. [Google Scholar] [CrossRef]
- Liu, N.; Stephan, T.; Cristallo, S.; Gallino, R.; Boehnke, P.; Nittler, L.R.; Alexander, C.M.O.; Davis, A.M.; Trappitsch, R.; Pellin, M.J. Presolar Silicon Carbide Grains of Groups Y and Z: Their Strontium and Barium Isotopic Compositions and Stellar Origins. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 1349. [Google Scholar]
- Palmerini, S.; Busso, M.; Vescovi, D.; Naselli, E.; Pidatella, A.; Mucciola, R.; Cristallo, S.; Mascali, D.; Mengoni, A.; Simonucci, S.; et al. 2021; Submitted to Astrophys. J.
- Liu, N.; Savina, M.R.; Davis, A.M.; Gallino, R.; Straniero, O.; Gyngard, F.; Pellin, M.J.; Willingham, D.G.; Dauphas, N.; Pignatari, M.; et al. Barium Isotopic Composition of Mainstream Silicon Carbides from Murchison: Constraints for s-process Nucleosynthesis in Asymptotic Giant Branch Stars. Astrophys. J. 2014, 786, 66. [Google Scholar] [CrossRef] [Green Version]
- Stephan, T.; Trappitsch, R.; Davis, A.M.; Pellin, M.J.; Rost, D.; Savina, M.R.; Dauphas, N. Strontium and barium isotopes in presolar silicon carbide grains measured with CHILI—Two types of X grains. Geochim. Cosmochim. Acta 2018, 109–126. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vescovi, D.; Reifarth, R. s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections. Universe 2021, 7, 239. https://doi.org/10.3390/universe7070239
Vescovi D, Reifarth R. s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections. Universe. 2021; 7(7):239. https://doi.org/10.3390/universe7070239
Chicago/Turabian StyleVescovi, Diego, and René Reifarth. 2021. "s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections" Universe 7, no. 7: 239. https://doi.org/10.3390/universe7070239
APA StyleVescovi, D., & Reifarth, R. (2021). s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections. Universe, 7(7), 239. https://doi.org/10.3390/universe7070239