ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity
Abstract
:1. Introduction
2. Field Equations and Vacuum Solution in Massive Gravity
3. Periastron Advance in Massive Gravity
4. Geodesic Equations and Effective Potential
5. ISCOs/OSCOs in Massive Gravity
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freedman, W.L.; Turner, M.S. Measuring and understanding the universe. Rev. Mod. Phys. 2003, 75, 1433. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Einstein, A. The Foundation of the General Theory of Relativity. Ann. Phys. 1916, 49, 769. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Brans, C.H. Mach’s Principle and a Relativistic Theory of Gravitation. II. Phys. Rev. 1962, 125, 2194. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163. [Google Scholar] [CrossRef]
- Langlois, D. Brane cosmology: An Introduction. Prog. Theor. Phys. Suppl. 2003, 148, 181. [Google Scholar] [CrossRef]
- Maartens, R. Brane world gravity. Living Rev. Rel. 2004, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- de Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli Action. Phys. Rev. D 2010, 82, 044020. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.G.; Tannukij, L.; Wongjun, P. A class of black holes in dRGT massive gravity and their thermodynamical properties. Eur. Phys. J. C 2016, 76, 119. [Google Scholar] [CrossRef]
- Schwarzschild, K. On the Gravitational Field of a Mass Point According to Einstein’s Theory; Sitzungsberichte der Preussischen Akademie der Wissenschaften: Berlin, Germany, 1916; p. 189. [Google Scholar]
- Panpanich, S.; Burikham, P. Fitting rotation curves of galaxies by de Rham-Gabadadze-Tolley massive gravity. Phys. Rev. D 2018, 98, 064008. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A. Implications of a positive cosmological constant for general relativity. Rept. Prog. Phys. 2017, 80, 102901. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 2020, 101, 024050. [Google Scholar] [CrossRef] [Green Version]
- Rezzolla, L.; Zanotti, O.; Font, J.A. Dynamics of thick discs around Schwarzschild–de Sitter black holes. Astron. Astrophys. 2003, 412, 603. [Google Scholar] [CrossRef] [Green Version]
- Stuchlik, Z. Influence of the relict cosmological constant on accretion discs. Mod. Phys. Lett. A 2005, 20, 561. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Schee, J. Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way. JCAP 2011, 2011, 018. [Google Scholar] [CrossRef]
- Sarkar, T.; Ghosh, S.; Bhadra, A. Newtonian analogue of Schwarzschild de-Sitter spacetime: Influence on the local kinematics in galaxies. Phys. Rev. D 2014, 90, 063008. [Google Scholar] [CrossRef] [Green Version]
- Perez, D.; Romero, G.E.; Bergliaffa, S.E.P. Accretion disks around black holes in modified strong gravity. Astron. Astrophys. 2013, 551, A4. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Han, Y.J. Innermost stable circular orbit of Kerr-MOG black hole. Eur. Phys. J. C 2017, 77, 655. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Reyes, I.A.; Rincon, A. A scale dependent black hole in three-dimensional space–time. Class. Quant. Grav. 2016, 33, 225010. [Google Scholar] [CrossRef]
- Rincon, A.; Koch, B.; Reyes, I. BTZ black hole assuming running couplings. J. Phys. Conf. Ser. 2017, 831, 012007. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B.; Panotopoulos, G.; Hernandez-Arboleda, A. Scale dependent three-dimensional charged black holes in linear and non-linear electrodynamics. Eur. Phys. J. C 2017, 77, 494. [Google Scholar] [CrossRef]
- Rincon, A.; Panotopoulos, G. Quasinormal modes of scale dependent black holes in (1 + 2)-dimensional Einstein-power-Maxwell theory. Phys. Rev. D 2018, 97, 024027. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E.; Rincon, A.; Koch, B.; Bargueño, P. Scale-dependent polytropic black hole. Eur. Phys. J. C 2018, 78, 246. [Google Scholar] [CrossRef]
- Rincon, A.; Koch, B. Scale-dependent rotating BTZ black hole. Eur. Phys. J. C 2018, 78, 1022. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B.; Panotopoulos, G. Scale-dependent (2 + 1)-dimensional electrically charged black holes in Einstein-power-Maxwell theory. Eur. Phys. J. C 2018, 78, 641. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B. Scale-dependent planar Anti-de Sitter black hole. Eur. Phys. J. Plus 2019, 134, 557. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E.; Rincon, A.; Panotopoulos, G.; Bargueño, P.; Koch, B. Black hole shadow of a rotating scale–dependent black hole. Phys. Rev. D 2020, 101, 064053. [Google Scholar] [CrossRef] [Green Version]
- Rincon, A.; Panotopoulos, G. Scale-dependent slowly rotating black holes with flat horizon structure. Phys. Dark Univ. 2020, 30, 100725. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A. Quasinormal spectra of scale-dependent Schwarzschild–de Sitter black holes. Phys. Dark Univ. 2021, 31, 100743. [Google Scholar] [CrossRef]
- Rincon, A.; Villanueva, J.R. The Sagnac effect on a scale-dependent rotating BTZ black hole background. Class. Quant. Grav. 2020, 37, 175003. [Google Scholar] [CrossRef]
- Fathi, M.; Rincon, A.; Villanueva, J.R. Photon trajectories on a first order scale-dependent static BTZ black hole. Class. Quant. Grav. 2020, 37, 075004. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E.; Rincon, A.; Bargueno, P. Five-dimensional scale-dependent black holes with constant curvature and Solv horizons. Eur. Phys. J. C 2020, 80, 367. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A.; Lopes, I. Interior solutions of relativistic stars in the scale-dependent scenario. Eur. Phys. J. C 2020, 80, 318. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A.; Lopes, I. Interior solutions of relativistic stars with anisotropic matter in scale-dependent gravity. Eur. Phys. J. C 2021, 81, 63. [Google Scholar] [CrossRef]
- Canales, F.; Koch, B.; Laporte, C.; Rincon, A. Cosmological constant problem: Deflation during inflation. JCAP 2020, 2001, 021. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, P.D.; Koch, B.; Laporte, C.; Rincón, Á. Can scale-dependent cosmology alleviate the H0 tension? JCAP 2021, 6, 019. [Google Scholar] [CrossRef]
- Cai, R.G. Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 2002, 65, 084014. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, L.; Chkareuli, G.; de Rham, C.; Gabadadze, G.; Tolley, A.J. On Black Holes in Massive Gravity. Phys. Rev. D 2012, 85, 044024. [Google Scholar] [CrossRef] [Green Version]
- Burikham, P.; Harko, T.; Lake, M.J. Mass bounds for compact spherically symmetric objects in generalized gravity theories. Phys. Rev. D 2016, 94, 064070. [Google Scholar] [CrossRef] [Green Version]
- Kareeso, P.; Burikham, P.; Harko, T. Mass-radius ratio bounds for compact objects in Massive Gravity theory. Eur. Phys. J. C 2018, 78, 941. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Wongjun, P. Greybody factor for black string in dRGT massive gravity. Eur. Phys. J. C 2019, 79, 330. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifschits, E.M. The Classical Theory of Fields, 3rd ed.; Course of Theoretical Physics Volume 2; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Jafari, G.; Setare, M.R.; Bakhtiarizadeh, H.R. Static spherically symmetric black holes of de Rham–Gabadadze–Tolley massive gravity in arbitrary dimensions. Phys. Lett. B 2017, 773, 395–400. [Google Scholar] [CrossRef]
- Li, P.; Li, X.z.; Xi, P. Black hole solutions in de Rham-Gabadadze-Tolley massive gravity. Phys. Rev. D 2016, 93, 064040. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Niz, G.; Tasinato, G. Analytic solutions in non-linear massive gravity. Phys. Rev. Lett. 2011, 107, 131101. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Niz, G.; Tasinato, G. Strong interactions and exact solutions in non-linear massive gravity. Phys. Rev. D 2011, 84, 064033. [Google Scholar] [CrossRef] [Green Version]
- Adkins, G.S.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A. Constraints on alternative theories of gravity with observations of the Galactic Center. EPJ Web Conf. 2018, 191, 01010. [Google Scholar] [CrossRef]
- Clifton, T.; Carrilho, P.; Fernandes, P.G.S.; Mulryne, D.J. Observational Constraints on the Regularized 4D Einstein-Gauss-Bonnet Theory of Gravity. Phys. Rev. D 2020, 102, 084005. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. Roy. Astron. Soc. 2013, 432, 3431. [Google Scholar] [CrossRef] [Green Version]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clénet, Y.; de Zeeuw, P.T.; Dexter, J.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar]
- García, A.; Hackmann, E.; Kunz, J.; Lämmerzahl, C.; Macías, A. Motion of test particles in a regular black hole space–time. J. Math. Phys. 2015, 56, 032501. [Google Scholar] [CrossRef] [Green Version]
Object | M | |||||||
---|---|---|---|---|---|---|---|---|
Hydrogen atom | ||||||||
Earth | ||||||||
Sun | ||||||||
Stellar association | ||||||||
Open stellar cluster | ||||||||
Globular cluster | ||||||||
Saggitarius A* | ||||||||
Dwarf galaxies | ||||||||
Spiral galaxies | ||||||||
Galaxy clusters |
Object | M | Astrophysical Relevance? | |
---|---|---|---|
Hydrogen atom | Subatomic scales | ||
Earth | Size of Solar System | ||
Sun | Rogue planets | ||
Stellar association | Rogue planets | ||
Open stellar cluster | Size of most globular clusters | ||
Globular cluster | Open cluster spacing | ||
Saggitarius A* | Globular cluster spacing | ||
Dwarf galaxies | Size of galaxy | ||
Spiral galaxies | Inter-galactic spacing | ||
Galaxy clusters | Size of galaxy cluster |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincón, Á.; Panotopoulos, G.; Lopes, I.; Cruz, N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe 2021, 7, 278. https://doi.org/10.3390/universe7080278
Rincón Á, Panotopoulos G, Lopes I, Cruz N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe. 2021; 7(8):278. https://doi.org/10.3390/universe7080278
Chicago/Turabian StyleRincón, Ángel, Grigoris Panotopoulos, Ilídio Lopes, and Norman Cruz. 2021. "ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity" Universe 7, no. 8: 278. https://doi.org/10.3390/universe7080278
APA StyleRincón, Á., Panotopoulos, G., Lopes, I., & Cruz, N. (2021). ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe, 7(8), 278. https://doi.org/10.3390/universe7080278