Dark Matter Sterile Neutrino from Scalar Decays
Abstract
1. Introduction
2. Sterile Neutrino Production by the Scalar Decay (SDP)
3. Parameterization and Methods
4. Cosmological Datasets
5. Analysis and Results
5.1. Sensitivity of Cosmological Data to and
5.2. Cosmological Constraints
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | http://camb.info, CAMB v.1.1.2 accessed on 31 May 2020. |
2 | http://cosmologist.info, accessed on 31 May 2020. |
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results VIII. Gravitational lensing. Astron. Astrophys. 2020, 641, A8. [Google Scholar]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82. [Google Scholar] [CrossRef]
- Zwaan, M.A.; Meyer, M.J.; Staveley-Smith, L. The velocity function of gas-rich galaxies. Mon. Not. R. Astron. Soc. 2010, 403, 1969. [Google Scholar] [CrossRef]
- Papastergis, E.; Martin, A.M.; Giovanelli, R.; Haynes, M.P. The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem. Astrophys. J. 2010, 739, 38. [Google Scholar] [CrossRef][Green Version]
- Salucci, P.; Burkert, A. Dark Matter Scaling Relations. Astrophys. J. 2000, 737, 9. [Google Scholar] [CrossRef]
- Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 2004, 351, 903. [Google Scholar] [CrossRef]
- de Naray, R.K.; Kaufmann, T. Recovering cores and cusps in dark matter haloes using mock velocity field observations. Mon. Not. R. Astron. Soc. 2011, 414, 3617. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 2011, 415, L40. [Google Scholar] [CrossRef]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279. [Google Scholar] [CrossRef]
- Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Fuller, G.M.; Patel, M. Sterile neutrino hot, warm and cold dark matter. Phys. Rev. D 2001, 64, 023501. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part. Sci. 2009, 59, 191. [Google Scholar] [CrossRef]
- Kusenko, A. Sterile neutrinos: The Dark side of the light fermions. Phys. Rep. 2009, 481, 1. [Google Scholar] [CrossRef]
- Asaka, T.; Blanchet, S.; Shaposhnikov, M. The MSW dark matter and neutrino masses. Phys. Lett. B 2005, 631, 151. [Google Scholar] [CrossRef]
- Asaka, T.; Shaposhnikov, M. The MSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17. [Google Scholar] [CrossRef]
- Bulbul, E.; Markevitch, M.; Foster, A.R.; Smith, R.K.; Loewenstein, M.; Randall, S.W. Detection of An unidentifed emission line in the Stacked X-ray spectrum of Galaxy Clusters. Astrophys. J. 2014, 789, 13. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D.; Franse, J. Unidentifed Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett. 2014, 113, 251301. [Google Scholar] [CrossRef]
- Boyarsky, A.; Franse, J.; Iakubovskyi, D.; Ruchayskiy, O. Checking the dark matter origin of 3.53 keV line with the MilkyWay centre. Phys. Rev. Lett. 2015, 115, 161301. [Google Scholar] [CrossRef]
- Jeltema, T.E.; Profumo, S. Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets. Mon. Not. R. Astron. Soc. 2015, 450, 2143. [Google Scholar] [CrossRef]
- Riemer-Sorensen, S. Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre. Astron. Astrophys. 2016, 590, A71. [Google Scholar] [CrossRef]
- Loewenstein, M.; Kusenko, A.; Biermann, P.L. New Limits on Sterile Neutrinos from Suzaku Observations of the Ursa Minor Dwarf Spheroidal Galaxy. Astrophys. J. 2009, 700, 426. [Google Scholar]
- Urban, O.; Werner, N.; Allen, S.W.; Simionescu, A.; Kaastra, J.S.; Strigari, L.E. A Suzaku Search for Dark Matter Emission Lines in the X-ray Brightest Galaxy Clusters. Mon. Not. R. Astron. Soc. 2015, 451, 2447–2461. [Google Scholar] [CrossRef]
- Malyshev, D.; Neronov, A.; Eckert, D. Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies. Phys. Rev. D 2014, 90, 1035062014. [Google Scholar] [CrossRef]
- Anderson, M.E.; Churazov, E.; Bregman, J.N. Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra. Mon. Not. R. Astron. Soc. 2015, 452, 3905–3923. [Google Scholar] [CrossRef]
- Bulbul, E.; Markevitch, M.; Foster, A.; Smith, R.K.; Loewenstein, M. Comment on “Dark matter searches going bananas: The contribution of Potassium (and Chlorine) to the 3.5 keV line”. arXiv 2014, arXiv:1409.4143. [Google Scholar]
- Carlson, E.; Jeltema, T.; Profumo, S. Where do the 3:5 keV photons come from? A morphological study of the Galactic Center and of Perseus. J. Cosmol. Astropart. Phys. 2015, 2, 9. [Google Scholar] [CrossRef][Green Version]
- Dodelson, S.; Widrow, L.M. Sterile-neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17. [Google Scholar] [CrossRef]
- Canetti, L.; Drewes, M.; Frossard, T.; Shaposhnikov, M. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos. Phys. Rev. D 2013, 87, 093006. [Google Scholar] [CrossRef]
- Merle, A.; Niro, V. Influence of a keV sterile neutrino on neutrinoless double beta decay: How things changed in recent years. Phys. Rev. D 2013, 88, 113004. [Google Scholar] [CrossRef]
- Shi, X.D.; Fuller, G.M. A New dark matter candidate: Nonthermal sterile neutrinos. Phys. Rev. Lett. 1999, 82, 2832. [Google Scholar] [CrossRef]
- Laine, M.; Shaposhnikov, M. Sterile neutrino dark matter as a consequence of MSM-induced lepton asymmetry. J. Cosmol. Astropart. Phys. 2008, 6, 31. [Google Scholar] [CrossRef]
- Merle, A.; Schneider, A. Production of Sterile Neutrino dark matter and the 3.5 keV line. Phys. Lett. B 2015, 749, 283–288. [Google Scholar] [CrossRef][Green Version]
- Adhikari, R.; Agostini, M.; Ky, N.A.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Dev, P.B.; et al. A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys. 2017, 1, 25. [Google Scholar] [CrossRef]
- Petraki, K.; Kusenko, A. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D 2008, 77, 065014. [Google Scholar] [CrossRef]
- Merle, A.; Totzauer, M. keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features. J. Cosmol. Astropart. Phys. 2015, 1506, 11. [Google Scholar] [CrossRef][Green Version]
- K onig, J.; Merle, A.; Totzauer, M. keV sterile neutrino dark matter from singlet scalar decays: The most general case. J. Cosmol. Astropart. Phys. 2016, 11, 38. [Google Scholar] [CrossRef]
- Murgia, R.; Merle, A.; Viel, M.; Totzauer, M.; Schneider, A. Non-cold dark matter at small scales: A general approach. J. Cosmol. Astropart. Phys. 2017, 11, 46. [Google Scholar] [CrossRef]
- Wantz, O.; Shellard, E.P.S. Axion Cosmology Revisited. Phys. Rev. D 2010, 82, 123508. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 8, 083C01. [Google Scholar] [CrossRef]
- Mangano, G.; Miele, G.; Pastor, S.; Pinto, T.; Pisanti, O.; Serpico, P.D. Relic neutrino decoupling including flavour oscillations. Nucl. Phys. B 2005, 729, 221. [Google Scholar] [CrossRef]
- Lewis, A.; Challinor, A.; Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 2000, 538, 473. [Google Scholar] [CrossRef]
- Lewis, A.; Bridle, S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D 2002, 66, 103511. [Google Scholar] [CrossRef]
- Tremaine, S.; Gunn, J.E. Dynamical role of light neutral leptons in cosmology. Phys. Rev. Lett. 1979, 42, 407. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D. A lower bound on the mass of dark matter particles. J. Cosmol. Astropart. Phys. 2009, 3, 5. [Google Scholar] [CrossRef]
- Boyarsky, A.; Lesgourgues, J.; Ruchayskiy, O.; Viel, M. Lyman-α constraints on warm and on warm-plus-cold dark matter models. J. Cosmol. Astropart. Phys. 2009, 905, 12. [Google Scholar] [CrossRef]
- Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J. Sterile neutrinos as subdominant warm dark matter. Phys. Rev. D 2007, 76, 103511. [Google Scholar] [CrossRef]
- Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 2014, 441, 24. [Google Scholar] [CrossRef]
- Gil-Marín, H.; Percival, W.J.; Cuesta, A.J.; Brownstein, J.R.; Chuang, C.H.; Ho, S.; Kitaura, F.S.; Maraston, C.; Prada, F.; Rodríguez-Torres, S.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Mon. Not. R. Astron. Soc. 2016, 460, 4210. [Google Scholar] [CrossRef]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017. [Google Scholar] [CrossRef]
- Troxel, M.A.; MacCrann, N.; Zuntz, J.; Eifler, T.F.; Krause, E.; Dodelson, S.; Gruen, D.; Blazek, J.; Friedrich, O.; Samuroff, S.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear. Phys. Rev. D 2018, D 98, 043528. [Google Scholar] [CrossRef]
- Hou, Z.; Keisler, R.; Knox, L.; Millea, M.; Reichardt, C. How massless neutrinos affect the cosmic microwave background damping tail. Phys. Rev. D 2013, 87, 083008. [Google Scholar] [CrossRef]
Parameter | Prior |
---|---|
[0.005, 0.1] | |
[0.001, 0.5 ] | |
[0.5, 10] | |
[0.01, 0.9] | |
[2.5, 5] | |
[0.5, 1.5] | |
[0, 6] | |
[3.046, 8] | |
[20, 100] |
SDP Parameter | Prior |
---|---|
[2, 30] | |
[ | |
[] | |
[10, 1000] | |
[0.001, 0.5] |
Parameter | CDM-Ext | SDP |
---|---|---|
0.0223 ± 0.0002 | 0.0219 ± 0.0003 | |
0.122 ± 0.004 | 0.121 ± 0.004 | |
100 | 1.0412 ± 0.0008 | 1.0413 ± 0.0009 |
0.087 ± 0.015 | 0.069 ± 0.012 | |
<0.321 | <0.198 | |
3.520 ± 0.259 | 3.380 ± 0.243 | |
0.860 ± 0.071 | ||
M (GeV) | 533.60 ± 47.21 | |
3.780 ± 0.642 | ||
3.451 ± 1.820 | ||
0.295 ± 0.013 | 0.284 ± 0.011 | |
0.808 ± 0.021 | 0.832 ± 0.019 | |
0.801 ± 0.004 | 0.809 ± 0.005 | |
0.741 ± 0.021 | 0.776 ± 0.018 | |
70.512 ± 1.556 | 71.210 ± 1.433 | |
(keV) | 7.882 ± 0.731 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, L.A. Dark Matter Sterile Neutrino from Scalar Decays. Universe 2021, 7, 309. https://doi.org/10.3390/universe7080309
Popa LA. Dark Matter Sterile Neutrino from Scalar Decays. Universe. 2021; 7(8):309. https://doi.org/10.3390/universe7080309
Chicago/Turabian StylePopa, Lucia Aurelia. 2021. "Dark Matter Sterile Neutrino from Scalar Decays" Universe 7, no. 8: 309. https://doi.org/10.3390/universe7080309
APA StylePopa, L. A. (2021). Dark Matter Sterile Neutrino from Scalar Decays. Universe, 7(8), 309. https://doi.org/10.3390/universe7080309