Thermal Radiation from Compact Objects in Curved Space-Time
Abstract
:1. Introduction
Stefan–Boltzmann Law
2. Ultra-Compact Objects
Quasi-Static Ultra-Compact Objects
3. Effects of Gravitational Redshift
UCOs Lie within Their Photon Spheres
4. Distant Luminosity of Thermal Radiation
Does the Radius of the Blackbody Change by Gravity?
5. Discussions and Conclusions
- Most of the radiation high energy that astrophysicists consider are non-thermal while the present discussion is pertinent only for thermal radiation emitted spherically from the surface of a compact object.
- For WDs, compactness or is extremely low, and therefore, this effect can be safely ignored.
- For hot NSs, this effect is indeed relevant for thermal emission due to a hot surface or Type I X-ray bursts, with thermal flashes resulting from runaway thermonuclear burning of accreted matter [31]. However, since that is usually believed for NSs, , and this effect is very significant: .
- For X-ray binaries containing BHs, the thermal X-ray emission mostly originates from extended hot accretion disks and not from the surface of the BHs. Thus, this effect is not pertinent for thermal X-ray emission from BH X-ray binaries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, S.W. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Misner, C.W. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Thorne, K.S. The relativistic equations of stellar structure and evolution. Astrophys. J. 1977, 212, 825. [Google Scholar] [CrossRef]
- Buchdahl, H.A. General Relativistic Fluid Spheres. Phys. Rev. 1959, 116, 1027. [Google Scholar] [CrossRef]
- Lavenda, B.H.; Dunning-Davies, J. Stefan-Boltzmann law for black bodies and black holes. Int. J. Theor. Phys. 1990, 29, 501. [Google Scholar] [CrossRef]
- de Lima, J.A.S.; Santos, J. Generalized Stefan-Boltzmann Law. Int. J. Theor. Phys. 1995, 34, 127. [Google Scholar] [CrossRef]
- Veitsman, E.V. Stefan-Boltzmann’s Law under Relativistic Conditions. Univers. J. Phys. Appl. 2013, 1, 380. [Google Scholar]
- Bondi, H. Proceedings of the Royal Society of London. Ser. Math. Phys. Sci. 1964, 282, 303. [Google Scholar]
- Bowers, R.L. Anisotropic Spheres in General Relativity. Astrophys. J. 1974, 188, 657. [Google Scholar] [CrossRef]
- Herrera, L. All static spherically symmetric anisotropic solutions of Einstein’s equations. Phys. Rev. D 2008, 77, 027502. [Google Scholar] [CrossRef]
- Herrera, L. General relativistic polytropes for anisotropic matter: The general formalism and applications. Phys. Rev. D 2013, 88, 084022. [Google Scholar] [CrossRef]
- Ivanov, B.V. Maximum bounds on the surface redshift of anisotropic stars. Phys. Rev. D 2002, 65, 104011. [Google Scholar] [CrossRef]
- Böhmer, C.G. Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class. Quantum Gravity 2006, 23, 6479. [Google Scholar] [CrossRef]
- Guilhermeet, R. Anisotropic stars as ultracompact objects in general relativity. Phys. Rev. D 2019, 99, 104072. [Google Scholar]
- Mitra, A. Why Gravitational Collapse Must be Accompanied by Emission of Radiation Both in Newtonian and Einstein Gravity? Phys. Rev. D 2006, 74, 024010. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A. A generic relation between baryonic and radiative energy densities of stars. Mon. Not. R. Astron. Soc. Lett. 2006, 367, L66. [Google Scholar] [CrossRef]
- Mitra, A. Radiation pressure supported stars in Einstein gravity: Eternally collapsing objects. Mon. Not. R. Astron. Soc. 2006, 369, 492. [Google Scholar] [CrossRef]
- Mitra, A. Likely formation of general relativistic radiation pressure supported stars or eternally collapsing objects. Mon. Not. R. Astron. Soc. Lett. 2010, 404, L50. [Google Scholar] [CrossRef]
- Mitra, A. Sources of stellar energy, Einstein–Eddington timescale of gravitational contraction and eternally collapsing objects. New Astron. 2006, 12, 146. [Google Scholar] [CrossRef]
- Misner, C.W. Relativistic Equations for Spherical Gravitational Collapse with Escaping Neutrinos. Phys. Rev. B 1965, 137, 1360. [Google Scholar] [CrossRef]
- Hernandez, W.C. Observer Time as a Coordinate in Relativistic Spherical Hydrodynamics. Astrophys. J. 1966, 143, 452. [Google Scholar] [CrossRef]
- Herrera, L. Dynamics of dissipative gravitational collapse. Phys. Rev. D 2004, 70, 084004. [Google Scholar] [CrossRef]
- Herrera, L. Some analytical models of radiating collapsing spheres. Phys. Rev. D 2006, 74, 044001. [Google Scholar] [CrossRef]
- Tewari, B.C. Collapsing shear-free radiating fluid spheres. Gen. Relativ. Gravit. 2013, 45, 1547. [Google Scholar] [CrossRef]
- Tolman, R.C. Temperature Equilibrium in a Static Gravitational Field. Phys. Rev. 1930, 36, 1791. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. On the Weight of Heat and Thermal Equilibrium in General Relativity. Phys. Rev. 1930, 35, 904. [Google Scholar] [CrossRef]
- Tolman, R.C. Relativity, Thermodynamics and Cosmology; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Buchdahl, H.A. Temperature Equilibrium in a Stationary Gravitational Field. Phys. Rev. 1949, 76, 427. [Google Scholar] [CrossRef]
- Einstein Relatively Easy. 2016. Available online: https://einsteinrelativelyeasy.com/index.php/general-relativity/35-metric-tensor-exercise-calculation-for-the-surface-of-a-sphere (accessed on 30 August 2022).
- The Physics Hypertext Book. 2022. Available online: https://physics.info/general-relativity/practice.shtml (accessed on 30 August 2022).
- van Paradijs, J.; Lewin, H.O. X-ray bursts–Some recent developments. Adv. Space Res. 1988, 8, 461. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, A.; Singh, K.K. Thermal Radiation from Compact Objects in Curved Space-Time. Universe 2022, 8, 504. https://doi.org/10.3390/universe8100504
Mitra A, Singh KK. Thermal Radiation from Compact Objects in Curved Space-Time. Universe. 2022; 8(10):504. https://doi.org/10.3390/universe8100504
Chicago/Turabian StyleMitra, Abhas, and Krishna Kumar Singh. 2022. "Thermal Radiation from Compact Objects in Curved Space-Time" Universe 8, no. 10: 504. https://doi.org/10.3390/universe8100504
APA StyleMitra, A., & Singh, K. K. (2022). Thermal Radiation from Compact Objects in Curved Space-Time. Universe, 8(10), 504. https://doi.org/10.3390/universe8100504