Basic Notions of Poisson and Symplectic Geometry in Local Coordinates, with Applications to Hamiltonian Systems
Abstract
:Contents | ||
1 | Introduction.................................................................................................................................. | 2 |
1.1 Non-Singular Theories...................................................................................................... | 2 | |
1.2 Singular Non-Degenerate Theories................................................................................. | 3 | |
2 | Poisson Manifold........................................................................................................................... | 5 |
2.1 Smooth Manifolds.............................................................................................................. | 5 | |
2.2 The Mapping of Manifolds and Induced Mappings of Tensor Fields.......................... | 8 | |
2.3 Poisson Manifold................................................................................................................ | 9 | |
3 | Hamiltonian Dynamical Systems on a Poisson Manifold......................................................... | 11 |
3.1 Hamiltonian Vector Fields................................................................................................. | 11 | |
3.2 Lie Bracket and Poisson Bracket....................................................................................... | 12 | |
3.3 Two Basic Examples of Poisson Structures...................................................................... | 12 | |
3.4 Poisson Mapping and Poisson Submanifold................................................................... | 13 | |
4 | Degenerate Poisson Manifold...................................................................................................... | 14 |
4.1 Casimir Functions.............................................................................................................. | 14 | |
4.2 Induced Bracket on the Casimir Submanifold................................................................ | 15 | |
4.3 Restriction of Hamiltonian Dynamics to the Casimir Submanifold............................. | 18 | |
5 | Integrals of Motion of a Hamiltonian System........................................................................... | 19 |
5.1 Basic Notions....................................................................................................................... | 19 | |
5.2 Hamiltonian Reduction to an Invariant Submanifold..................................................... | 20 | |
6 | Symplectic Manifold and Dirac Bracket...................................................................................... | 21 |
6.1 Basic Notions....................................................................................................................... | 21 | |
6.2 Restriction of Symplectic Structure to a Submanifold and Dirac Bracket.................... | 23 | |
6.3 Dirac’s Derivation of the Dirac Bracket............................................................................ | 26 | |
7 | Poisson Manifold and Dirac Bracket........................................................................................... | 26 |
7.1 Jacobi Identity for the Dirac Bracket................................................................................ | 26 | |
7.2 Some Applications of the Dirac Bracket.......................................................................... | 28 | |
7.3 Poisson Manifold with Prescribed Casimir Functions................................................... | 29 | |
8 | Conclusions.................................................................................................................................... | 31 |
Appendix A.............................................................................................................................................. | 32 | |
Appendix A.1. Jacobi Identity........................................................................................................ | 32 | |
Appendix A.2. Darboux Theorem................................................................................................ | 32 | |
Appendix A.3. Frobenius Theorem.............................................................................................. | 36 | |
References................................................................................................................................................. | 42 |
1. Introduction
1.1. Non-Singular Theories
1.2. Singular Non-Degenerate Theories
2. Poisson Manifold
2.1. Smooth Manifolds
2.2. The Mapping of Manifolds and Induced Mappings of Tensor Fields
2.3. Poisson Manifold
3. Hamiltonian Dynamical Systems on a Poisson Manifold
3.1. Hamiltonian Vector Fields
- (A)
- Integral lines of lie in the submanifolds .
- (B)
- All commute with H: , for all .
- (A)
- Integral lines of each lie in the submanifolds .
- (B)
- on .
3.2. Lie Bracket and Poisson Bracket
3.3. Two Basic Examples of Poisson Structures
- Consider the space , denote its coordinates , , and take the matrix composed from four blocks as follows:In all other coordinate systems , we define components of the matrix according to Equation (19). Then, is the contravariant tensor of second rank, which (in the system z) determines the Poisson structure on according to Equation (38):As is the numeric matrix, the condition (40) is satisfied in the coordinate system . According to Affirmation 4, it is then satisfied in all other coordinates. Given the Hamiltonian function H, the Hamiltonian equations acquire the following form:It is known (see Section 2.9 in [4]) that they follow from the variational problem for the functionalIn classical mechanics, equipped with the coordinates is called the phase space, the bracket (59) is called the canonical Poisson bracket, and the functional is called the Hamiltonian action.
- Given the manifold , let be structure constants of an n-dimensional Lie algebra. We define . Then, the equalities (13) imply (39) and (40), so the tensor determines a Poisson structure on . The corresponding bracketLet be coordinates of a constant vector . Taking as the Hamiltonian, we obtain the Hamiltonian equations (called the equations of precession)
3.4. Poisson Mapping and Poisson Submanifold
4. Degenerate Poisson Manifold
4.1. Casimir Functions
4.2. Induced Bracket on the Casimir Submanifold
- (a)
- are Casimir functions;
- (b)
- The Poisson tensor of satisfies the identity
4.3. Restriction of Hamiltonian Dynamics to the Casimir Submanifold
5. Integrals of Motion of a Hamiltonian System
5.1. Basic Notions
5.2. Hamiltonian Reduction to an Invariant Submanifold
6. Symplectic Manifold and Dirac Bracket
6.1. Basic Notions
6.2. Restriction of Symplectic Structure to a Submanifold and Dirac Bracket
6.3. Dirac’s Derivation of the Dirac Bracket
7. Poisson Manifold and Dirac Bracket
7.1. Jacobi Identity for the Dirac Bracket
- (A)
- The functions are functionally independent.
- (B)
- In the coordinates
7.2. Some Applications of the Dirac Bracket
7.3. Poisson Manifold with Prescribed Casimir Functions
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Jacobi Identity
Appendix A.2. Darboux Theorem
Appendix A.3. Frobenius Theorem
- (A)
- touches the surfaces : at each point .
- (B)
- is tangent14 to the surfaces , that is, the integral lines of lie on the surfaces.
- (A)
- The vectors touch at each point : at each point .
- (B)
- The vectors are tangent to , that is, each integral line of each lies in one of the submanifolds (hence, forms a basis of ).
- (A)
- For any , the vectors touch the submanifold that passes through this point:
- (B)
- Integral lines of that pass through , lye in that passes through this point.
- (C)
- are commuting fields
- (A)
- The fields form the closed algebra:
- (B)
- There is a foliation of such that the fields touch the leaf (see Equation (A35) ) at each point (hence, form a basis of (see Affirmation A4)).
1 | |
2 | We recall that the functional independence of functions guarantees that the system (5) can be resolved with respect to variables among , then are parametric equations of the surface . |
3 | In three-dimensional Euclidean space, this equality has simple geometric meaning: vector in is orthogonal to the surfaces of level of the scalar function . |
4 | Recall that all our assertions hold locally. |
5 | This is a non-trivial affirmation, as is not a covariant object. |
6 | Notice that it is an example of coordinate-dependent statement. |
7 | Without loss of generality, we have taken . |
8 | In the coordinate-free formulation of the Poisson geometry, the equality is taken as the definition of the symplectic form . |
9 | While formal variation of (119) leads to (51), the following point should be taken into account. Formulating a variational problem, we fix two points in phase space and then look for an extremal trajectory between them. The first-order system (51) has a unique solution for the given initial “position”: . This implies that the position at a future instant is uniquely determined by the initial position of the system. So, if we look for the extremal trajectory between two arbitrary chosen points and , the variational problem (119) generally will not have a solution. |
10 | With this respect, see the comment at the end of Section 2.2. |
11 | It is instructive to compare the systems (138) and (102). The constraints should not be confused with the first integrals. Indeed, first integrals represent the first-order differential equations which are consequences of a special form of the original equations, , whereas constraints are the algebraic equations. As a consequence, solutions of the systems (138) and (102) have very different properties. Solutions of the system (102) pass through any point of , while all solutions of (138) live on the submanifold . |
12 | In this section, we use the notation and instead of and to denote components of the vector in different coordinate systems. |
13 | Compare this discussion with that near Equation (53). |
14 | See the definition of a vector field tangent to a submanifold on page 7. |
References
- Dirac, P.A.M. Generalized Hamiltonian Dynamics. Can. J. Math. 1950, 2, 129. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Yeshiva University: New York, NY, USA, 1964. [Google Scholar]
- Gitman, D.M.; Tyutin, I.V. Quantization of Fields with Constraints; Springer: Berlin, Germany, 1990. [Google Scholar]
- Deriglazov, A. Classical Mechanics: Hamiltonian and Lagrangian Formalism, 2nd ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Fomenko, A.T.; Trofimov, V.V. Integrable Systems on Lie Algebras and Symmetric Spaces; Series: Advanced Studies in Contemporary Mathematics; Gordon and Breach Science Publishers: New York, NY, USA, 1988. [Google Scholar]
- Perelomov, A.M. Integrable Systems of Classical Mechanics and Lie Algebras; Birkhauser Verlag: Basel, Switzerland, 1990; Volume 1. [Google Scholar]
- Marsden, J.E.; Abraham, R.H. Foundations of Mechanics, 2nd ed.; Benjamin-Cummings Publishing Company, Inc.: Reading, MA, USA, 1978. [Google Scholar]
- Crainic, M.; Fernandes, R.L.; Mărcut, I. Lectures on Poisson Geometry; Series: Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2021; Volume 217. [Google Scholar]
- Guillemin, V.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Vaisman, I. Lectures on the Geometry of Poisson Manifolds; Series: Progress in Mathematics; Birkhauser: Basel, Switzerland; Boston, MA, USA, 1994; Volume 118. [Google Scholar]
- Karasev, M.V.; Maslov, V.P. Nonlinear Poisson Brackets Geometry and Quantization; Series: Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1993; Volume 119. [Google Scholar]
- Wu, K. Multi-messenger astrophysics of a millisecond pulsar orbiting around a massive black hole. Universe 2022, 8, 78. [Google Scholar] [CrossRef]
- Kassandrov, V.V.; Markova, N.V. New symmetries, conserved quantities and gauge nature of a free Dirac field. Symmetry 2021, 13, 2288. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Cosmo, F.D.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A. Symmetries and covariant Poisson brackets on presymplectic manifolds. Symmetry 2022, 14, 70. [Google Scholar] [CrossRef]
- Davtyan, M.; Gevorkian, Z.; Nersessian, A. Maxwell fish eye for polarized light. Phys. Rev. A 2021, 104, 053502. [Google Scholar] [CrossRef]
- Kim, J.-W. Quantum corrections to frame-dragging in scattering amplitudes. arXiv 2022, arXiv:2207.04970. [Google Scholar]
- Chen, W.M.; Chung, M.Z.; Huang, Y.T.; Kim, J.W. Lense-Thirring effects from on-shell amplitudes. arXiv 2022, arXiv:2205.07305. [Google Scholar]
- Ghezelbash, M. Bianchi IX geometry and the Einstein–Maxwell theory. Class. Quant. Grav. 2022, 39, 075012. [Google Scholar] [CrossRef]
- Dahal, P.K.; Terno, D.R. Polarization rotation and near-Earth quantum communications. Phys. Rev. A 2021, 104, 042610. [Google Scholar] [CrossRef]
- Chakraborty, C. Gravitational analog of Faraday rotation in the magnetized Kerr and Reissner-Nordström spacetimes. Phys. Rev. D 2022, 105, 064072. [Google Scholar] [CrossRef]
- Lee, H. Relativistic massive particle with spin-1/2: A vector bundle point of view. J. Math. Phys. 2022, 63, 012201. [Google Scholar] [CrossRef]
- Lee, H. Bundle theoretic descriptions of massive single-particle state spaces; W = with a view toward relativistic quantum information theory. arXiv 2022, arXiv:2201.04324. [Google Scholar]
- Läänemets, D.; Hohmann, M.; Pfeifer, C. Observables from spherically symmetric modified dispersion relations. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250155. [Google Scholar] [CrossRef]
- Beck, J.L. Relativistic mechanics theory for electrons that exhibits spin, zitterbewegung, superposition and produces Dirac’s wave equation. arXiv 2021, arXiv:2108.07267. [Google Scholar]
- Giri, S.; Sheoran, P.; Nandan, H.; Shaymatov, S. Chaos motion and Periastron precession of spinning test particles moving in the vicinage of a Schwarzschild black hole surrounded by a quintessence matter field. arXiv 2022, arXiv:2207.06007. [Google Scholar]
- Abdulxamidov, F.; Benavides-Gallego, C.A.; Han, W.; Rayimbaev, J.; Abdujabbarov, A. Spinning test particle motion around a rotating wormhole. Phys. Rev. D 2022, 106, 2. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zeng, Y.B.; Wang, Y.Q.; Wei, S.W.; Liu, Y.X. Equatorial orbits of spinning test particles in rotating boson stars. Eur. Phys. J. C 2022, 82, 809. [Google Scholar] [CrossRef]
- Bubenchikov, M.A.; Kaparulin, D.S.; Nosyrev, O.D. Chiral effects in classical spinning gas. J. Phys. A 2022, 55, 395006. [Google Scholar] [CrossRef]
- Vergeles, S.N.; Nikolaev, N.N.; Obukhov, Y.N.; Silenko, A.J.; Teryaev, O.V. General relativity effects in precision spin experimental tests of fundamental symmetries. arXiv 2022, arXiv:2204.00427. [Google Scholar]
- Zhang, Z.; Fan, G.; Jia, J. Effect of particle spin on trajectory deflection and gravitational lensing. J. Cosmol. Astropart. Phys. 2022, 2022, 061. [Google Scholar] [CrossRef]
- Mikóczi, B.; Keresztes, Z. Spin dynamics of moving bodies in rotating black hole spacetimes. Ann. Phys. 2022, 534, 2100444. [Google Scholar] [CrossRef]
- Ootsuka, T.; Yahagi, R. Generalized Mathisson-Papapetrou-Tulczyjew-Dixon equations. arXiv 2022, arXiv:2204.11430. [Google Scholar] [CrossRef]
- Compère, G.; Druart, A. Complete set of quasi-conserved quantities for spinning particles around Kerr. SciPost Phys. 2022, 12, 012. [Google Scholar] [CrossRef]
- Herrera, J.; Rosa, M.D.; Rubio, R.M. Relativistic particles with torsion in three-dimensional non-vacuum spacetimes. J. Math. Phys. 2021, 62, 062502. [Google Scholar] [CrossRef]
- Abyaneh, M.Z.; Farhoudi, M. Current density of Majorana bound states. Phys. Lett. A 2022, 453, 128475. [Google Scholar] [CrossRef]
- Awobode, A.M. Precision measurement of the electron orbital gyromagnetic factor: Relativistic contributions from zitterbewegung. Can. J. Phys. 2021, 99, 696. [Google Scholar] [CrossRef]
- Juneghani, S.N.; Bagheri, M.; Shokri, B. Study Zitterbewegung effect in a quasi one-dimensional relativistic quantum plasma by Dirac-Heisenberg-Wigner formalization. J. Cosmol. Astropart. Phys. 2021, 2021, 2. [Google Scholar] [CrossRef]
- Chuprikov, N.L. A variational principle, wave-particle duality, and the Schrödinger equation. arXiv 2022, arXiv:2206.14601. [Google Scholar]
- Otalora, G.; Saridakis, E.N. Effective dark energy through spin-gravity coupling. arXiv 2022, arXiv:2210.06598. [Google Scholar]
- Aoki, S.; Onogi, T. Conserved non-Noether charge in general relativity: Physical definition versus Noether’s second theorem. Int. J. Mod. Phys. A 2022, 35, 2250129. [Google Scholar] [CrossRef]
- Courant, T.J. Dirac manifolds. Trans. Am. Math. Soc. 1990, 319, 631. [Google Scholar] [CrossRef]
- Śniatycki, J. Dirac brackets in geometric dynamics. Ann. Inst. H. Poincaré A 1974, 20, 365. [Google Scholar]
- Zambon, M. Submanifolds in Poisson geometry: A survey. In Proceedings of the Complex and Differential Geometry, Leibniz Universität, Hannover, Germany, 14–18 September 2009; p. 403. [Google Scholar]
- Bursztyn, H. A brief introduction to Dirac manifolds. arXiv 2011, arXiv:1112.5037. [Google Scholar]
- Meinrenken, E. Poisson geometry from a Dirac perspective. Lett. Math. Phys. 2018, 108, 447. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deriglazov, A.A. Basic Notions of Poisson and Symplectic Geometry in Local Coordinates, with Applications to Hamiltonian Systems. Universe 2022, 8, 536. https://doi.org/10.3390/universe8100536
Deriglazov AA. Basic Notions of Poisson and Symplectic Geometry in Local Coordinates, with Applications to Hamiltonian Systems. Universe. 2022; 8(10):536. https://doi.org/10.3390/universe8100536
Chicago/Turabian StyleDeriglazov, Alexei A. 2022. "Basic Notions of Poisson and Symplectic Geometry in Local Coordinates, with Applications to Hamiltonian Systems" Universe 8, no. 10: 536. https://doi.org/10.3390/universe8100536
APA StyleDeriglazov, A. A. (2022). Basic Notions of Poisson and Symplectic Geometry in Local Coordinates, with Applications to Hamiltonian Systems. Universe, 8(10), 536. https://doi.org/10.3390/universe8100536