Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions
Abstract
:1. Introduction
2. The ImQMD Model
3. Ternary and Quaternary Breakup in Collisions of Two Massive Nuclei
3.1. The Mass Distributions and Angular Distributions of Ternary Breakup Fragments
3.2. Production Probability of Ternary Reactions
3.3. The Ratio of N/Z for the Third Fragment A3
3.4. The Space Distributions of Three Fragments in Ternary Breakup Reactions
3.5. Probing the Energy Dissipation Mechanism of Ternary Breakup Reactions
3.6. The Modes and Mechanisms of Quaternary Breakup Reactions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skwira-Chalot, I.; Siwek-Wilczyńska, K.; Wilczyński, J.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Brzychczyk, J.; Cardella, G.; Cavallaro, S.; et al. Dynamical evolution of the 197Au+197Au system at 15 MeV/nucleon. Int. J. Mod. Phys. E 2006, 15, 495–499. [Google Scholar] [CrossRef]
- Skwira-Chalot, I.; Siwek-Wilczyńska, K.; Wilczyński, J.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Brzychczyk, J.; Cardella, G.; Cavallaro, S.; et al. Fast Ternary and Quaternary Breakup of the197Au+197Au System in Collisions at 15 MeV/nucleon. Phys. Rev. Lett. 2008, 101, 262701. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, J.; Skwira-Chalot, I.; Siwek-Wilczyńska, K.; Gawlikowicz, W.; Łukasik, J.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Brzychczyk, J.; et al. Re-separation modes of 197Au+197Au system at Sub-Fermi energies. Int. J. Mod. Phys. E 2008, 17, 41–52. [Google Scholar] [CrossRef]
- Wilczyński, J.; Skwira-Chalot, I.; Siwek-Wilczyńska, K.; Pagano, A.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Brzychczyk, J.; Cardella, G.; et al. Aligned breakup of heavy nuclear systems as a new type of deep inelastic collisions at small impact parameters. Phys. Rev. C 2010, 81, 067604. [Google Scholar] [CrossRef]
- Gross, D.H.E. Theory of nuclear friction. Nucl. Phys. A 1975, 240, 472. [Google Scholar] [CrossRef]
- Randrup, J.; Swiatecki, W.J. One-body dissipation and nuclear dynamics. Ann. Phys. 1980, 125, 193. [Google Scholar] [CrossRef]
- Davies, K.T.; Sierk, A.J.; Nix, J.R. Effect of viscosity on the dynamics of fission. Phys. Rev. C 1976, 13, 2385. [Google Scholar] [CrossRef]
- Danielewicz, P. Transport properties of excited nuclear matter and the shock-wave profile. Phys. Lett. B 1984, 146, 168. [Google Scholar] [CrossRef] [Green Version]
- Carjan, N.; Sierk, A.J.; Nix, J.R. Effect of dissipation on ternary fission in very heavy nuclear systems. Nucl. Phys. A 1986, 452, 381. [Google Scholar] [CrossRef]
- Tian, J.L.; Li, X.; Wu, X.Z.; Li, Z.X.; Yan, S.W. Possible approaches of ternary fission in 197Au+197Au at 15A MeV. Chin. Phys. Lett. 2009, 26, 062502. [Google Scholar]
- Tian, J.L.; Li, X.; Wu, X.Z.; Li, Z.X.; Ya, S.W.n. Probing the dissipation mechanism in ternary reactions of 197Au+197Au by mean free path of nucleons. Chin. Phys. Lett. 2009, 26, 082504. [Google Scholar]
- Tian, J.L.; Li, X.; Yan, S.; Wu, X.Z.; Li, Z.X. Kinematic correlation of the ternary fission for the system 197Au+197Au. Int. J. Mod. Phys. E 2010, 19, 307. [Google Scholar] [CrossRef]
- Tian, J.L.; Wu, X.Z.; Li, Z.X.; Zhao, K.; Zhang, Y.X.; Li, X.; Yan, S.W. Mechanism of ternary breakup in the reaction 197Au+197Au at 15A MeV. Phys. Rev. C 2010, 82, 054608. [Google Scholar] [CrossRef]
- Tian, J.; Li, X.; Yan, S. Understanding of the dissipation mechanism in ternary fission for the system 197Au+197Au. Chin. Phys. C 2009, 33, 109–112. [Google Scholar]
- Li, X.; Tian, J.; Yan, S.; Cheng, J.X.; Jiang, X. Angular distributions of fragments produced in ternary reaction of 197Au+197Au at 15 A MeV. Mod. Phys. Lett. A 2011, 26, 449. [Google Scholar] [CrossRef]
- Li, Y.J.; Yan, S.W.; Jiang, X.; Wang, L.C. Dynamical effects in heavy-ion induced ternary breakup. Nucl. Phys. A 2013, 902, 1–20. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Wang, N.; Li, Q.-F.; Ou, L.; Tian, J.-L.; Liu, M.; Zhao, K.; Wu, X.-Z.; Li, Z.-X. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 2020, 15, 54301. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Wu, X. Improved quantum molecular dynamics model and its applications to fusion reaction near barrier. Phys. Rev. C 2002, 65, 064608. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Li, Z.; Wu, X.; Tian, J.; Zhang, Y.; Liu, M. Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier. Phys. Rev. C 2004, 69, 034608. [Google Scholar] [CrossRef] [Green Version]
- Hartnack, C.; Zhuxia, L.; Neise, L.; Peilert, G.; Rosenhauer, A.; Sorge, H.; Aichelin, J.; Stöcker, H.; Greiner, W. Quantum molecular dynamics a microscopic model from UNILAC to CERN energies. Nucl. Phys. A 1989, 495, 303–309. [Google Scholar] [CrossRef]
- Hartnack, C.; Puri, R.; Aichelin, J. Modelling the many-body dynamics of heavy ion collisions: Present status and future perspective. Eur. Phys. J. A 1998, 1, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Aichelin, J. "Quantum" molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 1991, 202, 233–360. [Google Scholar] [CrossRef]
- Ono, A.; Horiuchi, H.; Maruyama, T.; Ohnishi, A. Fragment formation studied with anti-symmetrized version of molecular dynamics with two-nucleon collisions. Phys. Rev. Lett. 1992, 68, 2898–2900. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.; Maruyama, T.; Bonasera, A. Constrained molecular dynamics approach to fermionic systems. Phys. Rev. C 2001, 64, 024612. [Google Scholar] [CrossRef] [Green Version]
- Feldmeier, H.; Schnack, J. Molecular dynamics for fermions. Rev. Mod. Phys. 2000, 72, 655. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Li, Z.; Wu, X.; Zhao, E. Search for possible way of producing super-heavy elements. Mod. Phys. Lett. A 2005, 20, 2619–2627. [Google Scholar] [CrossRef] [Green Version]
- Bass, R. Fusion of heavy nuclei in a classical model. Nucl. Phys. A 1974, 231, 45. [Google Scholar] [CrossRef]
- Wang, N.; Wu, X.Z.; Li, Z.X. Dynamic study of fusion reactions for 40,48Ca+90,96Zr around the Coulomb barrier. Phys. Rev. C 2003, 67, 024604. [Google Scholar] [CrossRef] [Green Version]
- Diehl, H.; Greiner, W. Theory of ternary fission in the liquid drop model. Nucl. Phys. A 1974, 229, 29. [Google Scholar] [CrossRef]
Para. | α MeV | β MeV | γ | gτ MeV | g0 MeVfm2 | η | Cs MeV | κs fm2 | ρ0 fm−3 |
---|---|---|---|---|---|---|---|---|---|
IQ2 | −356 | 303 | 7/6 | 12.5 | 7 | 2/3 | 32 | 0.08 | 0.165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Li, X.; Li, C. Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions. Universe 2022, 8, 555. https://doi.org/10.3390/universe8110555
Tian J, Li X, Li C. Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions. Universe. 2022; 8(11):555. https://doi.org/10.3390/universe8110555
Chicago/Turabian StyleTian, Junlong, Xian Li, and Cheng Li. 2022. "Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions" Universe 8, no. 11: 555. https://doi.org/10.3390/universe8110555
APA StyleTian, J., Li, X., & Li, C. (2022). Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions. Universe, 8(11), 555. https://doi.org/10.3390/universe8110555