ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness
Abstract
1. Introduction
2. Materials and Methods
2.1. Photosynthetic Feasibility Metrics
2.2. Stellar Spectral Types
2.3. Modelling of Exoplanets Atmospheres
2.4. Calculation of Absorption Cross-Section of Pigments
2.5. Code and Data Availability
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Chl a | chlorophyll a |
Chl b | chlorophyll b |
BChl a | bacteriochlorophyll a |
BChl b | bacteriochlorophyll b |
Phot0 | synthetic photosystem 0 |
photosynthetic photon flux density | |
HZ | habitability zone |
HZi | inner part of the HZ |
HZm | middle part of the HZ |
HZo | outer part of the HZ |
PAR | photosynthetic active radiation |
S | stellar irradiance |
au | astronomical unit |
Appendix A. Figures and Tables
Spectral Type | [K] | R [] | L [] | HZi [au] | HZm [au] | HZo [au] | S [W m−2] | S [W m−2] | S [W m−2] |
---|---|---|---|---|---|---|---|---|---|
A5 V | 8250 | 1.70 | 12.08 | 2.50 | 3.46 | 3.91 | 2624.57 | 1370.04 | 1075.02 |
G2 V | 5750 | 1.00 | 0.99 | 0.71 | 0.99 | 1.12 | 2624.57 | 1370.04 | 1075.02 |
M8 V | 2500 | 0.12 | 5.2 × 10 | 0.02 | 0.02 | 0.02 | 2624.57 | 1370.04 | 1075.02 |
Exoplanet Atmosphere | Pigment | [s−1] | [s−1] | [s−1] | ppfd [μmol photon m−2 s−1] | S [W m−2] |
---|---|---|---|---|---|---|
Earth- like | BChlA | 11.42 | 4.78 | 6.65 | 2400.48 | 1370.04 |
BChlB | 15.68 | 8.92 | 6.77 | 2400.48 | 1370.04 | |
ChlA | 13.54 | 9.79 | 3.75 | 2400.48 | 1370.04 | |
ChlB | 16.24 | 12.96 | 3.27 | 2400.48 | 1370.04 | |
Phot0 | 6.37 | 1.91 | 4.46 | 2400.48 | 1370.04 | |
Highly oxidizing | BChlA | 10.06 | 3.20 | 6.87 | 2146.82 | 1370.04 |
BChlB | 13.31 | 6.29 | 7.02 | 2146.82 | 1370.04 | |
ChlA | 10.78 | 7.12 | 3.66 | 2146.82 | 1370.04 | |
ChlB | 13.21 | 10.03 | 3.18 | 2146.82 | 1370.04 | |
Phot0 | 5.23 | 1.01 | 4.22 | 2146.82 | 1370.04 | |
Weakly oxidizing | BChlA | 11.93 | 4.76 | 7.17 | 2442.12 | 1370.04 |
BChlB | 16.14 | 8.83 | 7.31 | 2442.12 | 1370.04 | |
ChlA | 13.76 | 9.88 | 3.88 | 2442.12 | 1370.04 | |
ChlB | 16.32 | 12.92 | 3.40 | 2442.12 | 1370.04 | |
Phot0 | 6.47 | 1.87 | 4.60 | 2442.12 | 1370.04 | |
Reducing | BChlA | 13.77 | 6.39 | 7.38 | 2676.98 | 1370.04 |
BChlB | 18.80 | 11.30 | 7.51 | 2676.98 | 1370.04 | |
ChlA | 16.77 | 12.73 | 4.04 | 2676.98 | 1370.04 | |
ChlB | 19.10 | 15.54 | 3.56 | 2676.98 | 1370.04 | |
Phot0 | 7.78 | 2.90 | 4.88 | 2676.98 | 1370.04 |
HZ | Exoplanet Atmosphere | Pigment | [s−1] | [s−1] | [s−1] | ppfd [μmol photon m−2 s−1] | S [W m−2] |
---|---|---|---|---|---|---|---|
HZi | Earth- like | BChlA | 22.05 | 4.73 | 17.32 | 4052.63 | 2624.57 |
HZi | BChlB | 26.94 | 8.71 | 18.24 | 4052.63 | 2624.57 | |
HZi | ChlA | 17.63 | 8.91 | 8.72 | 4052.63 | 2624.57 | |
HZi | ChlB | 21.35 | 14.39 | 6.96 | 4052.63 | 2624.57 | |
HZi | Phot0 | 10.42 | 2.07 | 8.35 | 4052.63 | 2624.57 | |
HZi | Highly oxidizing | BChlA | 21.16 | 3.15 | 18.00 | 3741.48 | 2624.57 |
HZi | BChlB | 25.19 | 6.17 | 19.02 | 3741.48 | 2624.57 | |
HZi | ChlA | 15.02 | 6.47 | 8.56 | 3741.48 | 2624.57 | |
HZi | ChlB | 18.02 | 11.23 | 6.79 | 3741.48 | 2624.57 | |
HZi | Phot0 | 9.01 | 1.11 | 7.90 | 3741.48 | 2624.57 | |
HZi | Weakly oxidizing | BChlA | 23.44 | 4.73 | 18.72 | 4157.44 | 2624.57 |
HZi | BChlB | 28.35 | 8.64 | 19.71 | 4157.44 | 2624.57 | |
HZi | ChlA | 17.98 | 8.94 | 9.04 | 4157.44 | 2624.57 | |
HZi | ChlB | 21.59 | 14.35 | 7.25 | 4157.44 | 2624.57 | |
HZi | Phot0 | 10.65 | 2.04 | 8.62 | 4157.44 | 2624.57 | |
HZi | Reducing | BChlA | 25.57 | 6.37 | 19.20 | 4480.02 | 2624.57 |
HZi | BChlB | 31.23 | 11.06 | 20.17 | 4480.02 | 2624.57 | |
HZi | ChlA | 20.73 | 11.34 | 9.39 | 4480.02 | 2624.57 | |
HZi | ChlB | 24.73 | 17.16 | 7.57 | 4480.02 | 2624.57 | |
HZi | Phot0 | 12.30 | 3.16 | 9.14 | 4480.02 | 2624.57 | |
HZm | Earth- like | BChlA | 11.51 | 2.47 | 9.04 | 2115.69 | 1370.04 |
HZm | BChlB | 14.07 | 4.54 | 9.52 | 2115.69 | 1370.04 | |
HZm | ChlA | 9.20 | 4.65 | 4.55 | 2115.69 | 1370.04 | |
HZm | ChlB | 11.14 | 7.51 | 3.63 | 2115.69 | 1370.04 | |
HZm | Phot0 | 5.44 | 1.08 | 4.36 | 2115.69 | 1370.04 | |
HZm | Highly oxidizing | BChlA | 11.03 | 1.64 | 9.39 | 1950.40 | 1370.04 |
HZm | BChlB | 13.13 | 3.21 | 9.92 | 1950.40 | 1370.04 | |
HZm | ChlA | 7.82 | 3.36 | 4.46 | 1950.40 | 1370.04 | |
HZm | ChlB | 9.39 | 5.84 | 3.54 | 1950.40 | 1370.04 | |
HZm | Phot0 | 4.70 | 0.57 | 4.12 | 1950.40 | 1370.04 | |
HZm | Weakly oxidizing | BChlA | 12.23 | 2.46 | 9.77 | 2168.68 | 1370.04 |
HZm | BChlB | 14.79 | 4.50 | 10.28 | 2168.68 | 1370.04 | |
HZm | ChlA | 9.37 | 4.65 | 4.72 | 2168.68 | 1370.04 | |
HZm | ChlB | 11.26 | 7.48 | 3.78 | 2168.68 | 1370.04 | |
HZm | Phot0 | 5.55 | 1.06 | 4.50 | 2168.68 | 1370.04 | |
HZm | Reducing | BChlA | 13.35 | 3.32 | 10.02 | 2338.10 | 1370.04 |
HZm | BChlB | 16.30 | 5.77 | 10.53 | 2338.10 | 1370.04 | |
HZm | ChlA | 10.82 | 5.92 | 4.90 | 2338.10 | 1370.04 | |
HZm | ChlB | 12.90 | 8.95 | 3.95 | 2338.10 | 1370.04 | |
HZm | Phot0 | 6.42 | 1.65 | 4.77 | 2338.10 | 1370.04 | |
HZo | Earth- like | BChlA | 9.03 | 1.94 | 7.10 | 1660.29 | 1075.02 |
HZo | BChlB | 11.04 | 3.57 | 7.47 | 1660.29 | 1075.02 | |
HZo | ChlA | 7.22 | 3.65 | 3.57 | 1660.29 | 1075.02 | |
HZo | ChlB | 8.74 | 5.89 | 2.85 | 1660.29 | 1075.02 | |
HZo | Phot0 | 4.27 | 0.85 | 3.42 | 1660.29 | 1075.02 | |
HZo | Highly oxidizing | BChlA | 8.68 | 1.30 | 7.38 | 1534.67 | 1075.02 |
HZo | BChlB | 10.33 | 2.54 | 7.79 | 1534.67 | 1075.02 | |
HZo | ChlA | 6.17 | 2.66 | 3.51 | 1534.67 | 1075.02 | |
HZo | ChlB | 7.40 | 4.61 | 2.79 | 1534.67 | 1075.02 | |
HZo | Phot0 | 3.70 | 0.46 | 3.24 | 1534.67 | 1075.02 | |
HZo | Weakly oxidizing | BChlA | 9.61 | 1.94 | 7.67 | 1704.13 | 1075.02 |
HZo | BChlB | 11.62 | 3.55 | 8.07 | 1704.13 | 1075.02 | |
HZo | ChlA | 7.37 | 3.67 | 3.70 | 1704.13 | 1075.02 | |
HZo | ChlB | 8.86 | 5.89 | 2.97 | 1704.13 | 1075.02 | |
HZo | Phot0 | 4.37 | 0.84 | 3.53 | 1704.13 | 1075.02 | |
HZo | Reducing | BChlA | 10.48 | 2.61 | 7.87 | 1835.42 | 1075.02 |
HZo | BChlB | 12.80 | 4.53 | 8.26 | 1835.42 | 1075.02 | |
HZo | ChlA | 8.49 | 4.65 | 3.85 | 1835.42 | 1075.02 | |
HZo | ChlB | 10.13 | 7.03 | 3.10 | 1835.42 | 1075.02 | |
HZo | Phot0 | 5.04 | 1.30 | 3.74 | 1835.42 | 1075.02 |
Exoplanet Atmosphere | Pigment | [s−1] | [s−1] | [s−1] | ppfd [μmol photon m−2 s−1] | S [W m−2] |
---|---|---|---|---|---|---|
Earth- like | BChlA | 0.95 | 1.42 × 10−3 | 0.94 | 16.48 | 1370.04 |
BChlB | 1.63 | 3.59 × 10−3 | 1.62 | 16.48 | 1370.04 | |
ChlA | 0.07 | 2.20 ×10−3 | 0.07 | 16.48 | 1370.04 | |
ChlB | 0.06 | 1.46 × 10−2 | 0.05 | 16.48 | 1370.04 | |
Phot0 | 0.02 | 2.99 × 10−4 | 0.02 | 16.48 | 1370.04 | |
Highly oxidizing | BChlA | 0.98 | 1.09 × 10−3 | 0.98 | 16.07 | 1370.04 |
BChlB | 1.75 | 2.84 × 10−3 | 1.75 | 16.07 | 1370.04 | |
ChlA | 0.07 | 1.67 × 10−3 | 0.07 | 16.07 | 1370.04 | |
ChlB | 0.06 | 1.18 × 10−2 | 0.04 | 16.07 | 1370.04 | |
Phot0 | 0.02 | 1.56 × 10−4 | 0.02 | 16.07 | 1370.04 | |
Weakly oxidizing | BChlA | 1.01 | 1.41 × 10−3 | 1.01 | 17.17 | 1370.04 |
BChlB | 1.79 | 3.57 × 10−3 | 1.79 | 17.17 | 1370.04 | |
ChlA | 0.07 | 2.17 × 10−3 | 0.07 | 17.17 | 1370.04 | |
ChlB | 0.06 | 1.45 × 10−2 | 0.05 | 17.17 | 1370.04 | |
Phot0 | 0.02 | 2.93 × 10−4 | 0.02 | 17.17 | 1370.04 | |
Reducing | BChlA | 1.03 | 1.72 × 10−3 | 1.03 | 17.98 | 1370.04 |
BChlB | 1.82 | 4.20 × 10−3 | 1.82 | 17.98 | 1370.04 | |
ChlA | 0.08 | 2.62 × 10−3 | 0.07 | 17.98 | 1370.04 | |
ChlB | 0.07 | 1.67 × 10−2 | 0.05 | 17.98 | 1370.04 | |
Phot0 | 0.02 | 4.64 × 10−4 | 0.02 | 17.98 | 1370.04 |
1 | Further information on the ExoPhot project, data, and processing details can be found at http://github.com/ExoPhotProject (accessed on 22 November 2022). |
2 | http://svo2.cab.inta-csic.es/theory/vosa/ (accessed on 22 November 2022). |
3 | https://psg.gsfc.nasa.gov/ (accessed on 22 November 2022). |
4 | http://github.com/ExoPhotProject (accessed on 22 November 2022). |
References
- Cockell, C.S. ‘Astrobiology’ and the ethics of new science. Interdiscip. Sci. Rev. 2001, 26, 90–96. [Google Scholar] [CrossRef]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable Zones around Main Sequence Stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Sagan, C.; Thompson, W.R.; Carlson, R.; Gurnett, D.; Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 1993, 365, 715–721. [Google Scholar] [CrossRef]
- Des Marais, D.J.; Harwit, M.O.; Jucks, K.W.; Kasting, J.F.; Lin, D.N.C.; Lunine, J.I.; Schneider, J.; Seager, S.; Traub, W.A.; Woolf, N.J. Remote Sensing of Planetary Properties and Biosignatures on Extrasolar Terrestrial Planets. Astrobiology 2002, 2, 153–181. [Google Scholar] [CrossRef]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef]
- Quanz, S.P.; Ottiger, M.; Fontanet, E.; Kammerer, J.; Menti, F.; Dannert, F.; Gheorghe, A.; Absil, O.; Airapetian, V.S.; Alei, E.; et al. Large Interferometer For Exoplanets (LIFE). Astron. Astrophys. 2022, 664, A21. [Google Scholar] [CrossRef]
- Hall, D.O.; Rao, K. Photosynthesis; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; John Wiley & Sons: Chichester, UK, 2021. [Google Scholar]
- Gale, J.; Wandel, A. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life. Int. J. Astrobiol. 2017, 16, 1–9. [Google Scholar] [CrossRef][Green Version]
- Hu, R.; Seager, S.; Bains, W. Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases. Astrophys. J. 2012, 761, 166. [Google Scholar] [CrossRef]
- Trifonov, T.; Caballero, J.; Morales, J.; Seifahrt, A.; Ribas, I.; Reiners, A.; Bean, J.; Luque, R.; Parviainen, H.; Pallé, E.; et al. A nearby transiting rocky exoplanet that is suitable for atmospheric investigation. Science 2021, 371, 1038–1041. [Google Scholar] [CrossRef]
- García de la Concepción, J.; Cerdán, L.; Marcos-Arenal, P.; Burillo-Villalobos, M.; Fonseca-Bonilla, N.; Lizcano-Vaquero, R.; Ángeles López-Cayuela, M.; Gómez, F.; Caballero, J.A. Phot0, a plausible primeval pigment on Earth and rocky exoplanets. Phys. Chem. Chem. Phys. 2022, 24, 16979–16987. [Google Scholar] [CrossRef] [PubMed]
- Berdyugina, S.V.; Kuhn, J.R.; Harrington, D.M.; Šantl Temkiv, T.; Messersmith, E.J. Remote sensing of life: Polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobiol. 2016, 15, 45–56. [Google Scholar] [CrossRef]
- Kolokolova, L.; Hough, J.H.; Levasseur-Regourd, A.C. Polarimetry of Stars and Planetary Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Kiang, N.Y.; Segura, A.; Tinetti, G.; Govindjee; Blankenship, R.E.; Cohen, M.; Siefert, J.; Crisp, D.; Meadows, V.S. Spectral Signatures of Photosynthesis. II. Coevolution with Other Stars And The Atmosphere on Extrasolar Worlds. Astrobiology 2007, 7, 252–274. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, Y.; Umemura, M.; Shoji, M.; Kayanuma, M.; Yabana, K.; Shiraishi, K. Light absorption efficiencies of photosynthetic pigments: The dependence on spectral types of central stars. Int. J. Astrobiol. 2015, 14, 505–510. [Google Scholar] [CrossRef]
- Ritchie, R.J.; Larkum, A.W.; Ribas, I. Could photosynthesis function on Proxima Centauri b? Int. J. Astrobiol. 2018, 17, 147–176. [Google Scholar] [CrossRef]
- Mullan, D.J.; Bais, H.P. Photosynthesis on a Planet Orbiting an M Dwarf: Enhanced Effectiveness during Flares. Astrophys. J. 2018, 865, 101. [Google Scholar] [CrossRef]
- Lehmer, O.R.; Catling, D.C.; Parenteau, M.N.; Hoehler, T.M. The Productivity of Oxygenic Photosynthesis around Cool, M Dwarf Stars. Astrophys. J. 2018, 859, 171. [Google Scholar] [CrossRef]
- Lehmer, O.R.; Catling, D.C.; Parenteau, M.N.; Kiang, N.Y.; Hoehler, T.M. The Peak Absorbance Wavelength of Photosynthetic Pigments Around Other Stars From Spectral Optimization. Front. Astron. Space Sci. 2021, 8, 689441. [Google Scholar] [CrossRef]
- Lingam, M.; Loeb, A. Photosynthesis on habitable planets around low-mass stars. Mon. Not. RAS 2019, 485, 5924–5928. Available online: https://academic.oup.com/mnras/article-pdf/485/4/5924/28271824/stz847.pdf (accessed on 22 November 2022).
- Lingam, M.; Loeb, A. Constraints on Aquatic Photosynthesis for Terrestrial Planets around Other Stars. Astrophys. J. 2020, 889, l15. [Google Scholar] [CrossRef]
- Covone, G.; Ienco, R.M.; Cacciapuoti, L.; Inno, L. Efficiency of the oxygenic photosynthesis on Earth-like planets in the habitable zone. Mon. Not. RAS 2021, 505, 3329–3335. Available online: https://academic.oup.com/mnras/article-pdf/505/3/3329/38673779/stab1357.pdf (accessed on 22 November 2022).
- Lingam, M.; Balbi, A.; Mahajan, S.M. Excitation Properties of Photopigments and Their Possible Dependence on the Host Star. Astrophys. J. 2021, 921, L41. [Google Scholar] [CrossRef]
- Mondragón-Solórzano, G.; Sandoval-Lira, J.; Nochebuena, J.; Cisneros, G.A.; Barroso-Flores, J. Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of Blastochloris viridis’ Light Harvesting 1-Reaction Center Complex. J. Chem. Theory Comput. 2022, 18, 4555–4564. [Google Scholar] [CrossRef] [PubMed]
- McCree, K. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Madronich, S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. Atmos. 1987, 92, 9740–9752. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JD092iD08p09740 (accessed on 22 November 2022).
- McCree, K. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Liu, J.; van Iersel, M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Front. Plant Sci. 2021, 12, 328. [Google Scholar] [CrossRef]
- Desidera, S. Properties of Hypothetical Planetary Systems around the Brown Dwarf Gliese 229B. Publ. ASP 1999, 111, 1529–1538. [Google Scholar] [CrossRef]
- Caballero, J.A. Formation, Evolution and Multiplicity of Brown Dwarfs and Giant Exoplanets. Astrophys. Space Sci. Proc. 2010, 14, 79–90. [Google Scholar] [CrossRef]
- Gillon, M.; Jehin, E.; Lederer, S.M.; Delrez, L.; de Wit, J.; Burdanov, A.; Van Grootel, V.; Burgasser, A.J.; Triaud, A.H.M.J.; Opitom, C.; et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 2016, 533, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Gillon, M.; Triaud, A.H.M.J.; Demory, B.O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; de Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Zechmeister, M.; Dreizler, S.; Ribas, I.; Reiners, A.; Caballero, J.A.; Bauer, F.F.; Béjar, V.J.S.; González-Cuesta, L.; Herrero, E.; Lalitha, S.; et al. The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star. Astron. Astrophys. 2019, 627, A49. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, H.; Caballero, J.A.; Cifuentes, C.; Piro, A.L.; Barnes, R. Exomoons in the Habitable Zones of M Dwarfs. Astrophys. J. 2019, 887, 261. [Google Scholar] [CrossRef]
- Scalo, J.; Kaltenegger, L.; Segura, A.G.; Fridlund, M.; Ribas, I.; Kulikov, Y.N.; Grenfell, J.L.; Rauer, H.; Odert, P.; Leitzinger, M.; et al. M Stars as Targets for Terrestrial Exoplanet Searches And Biosignature Detection. Astrobiology 2007, 7, 85–166. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.A.; González-Álvarez, E.; Brady, M.; Trifonov, T.; Ellis, T.G.; Dorn, C.; Cifuentes, C.; Molaverdikhani, K.; Bean, J.L.; Boyajian, T.; et al. A detailed analysis of the Gl 486 planetary system. A&A 2022, 665, A120. [Google Scholar] [CrossRef]
- Castelli, F.; Kurucz, R.L. New Grids of ATLAS9 Model Atmospheres. In Modelling of Stellar Atmospheres, Poster Contributions, Proceedings of the 210th Symposium of the International Astronomical Union, Uppsala University, Uppsala, Sweden, 17–21 June 2002; Piskunov, N., Weiss, W.W., Gray, D.F., Piskunov, N., Weiss, W.W., Gray, D.F., Eds.; Published on behalf of the IAU by the Astronomical Society of the Pacific; Cambridge University Press: Cambridge, UK, 2003; Volume 210, p. A20. Available online: https://arxiv.org/abs/astro-ph/0405087 (accessed on 22 November 2022).
- Baraffe, I.; Homeier, D.; Allard, F.; Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 2015, 577, 4–9. [Google Scholar] [CrossRef]
- Cifuentes, C.; Caballero, J.A.; Cortés-Contreras, M.; Montes, D.; Abellán, F.J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M.R.; Morales, J.C.; Amado, P.J.; et al. CARMENES input catalogue of M dwarfs. Astron. Astrophys. 2020, 642, A115. [Google Scholar] [CrossRef]
- Bayo, A.; Rodrigo, C.; Barrado Y Navascués, D.; Solano, E.; Gutiérrez, R.; Morales-Calderón, M.; Allard, F. VOSA: Virtual observatory SED analyzer. An application to the Collinder 69 open cluster. Astron. Astrophys. 2008, 492, 277–287. [Google Scholar] [CrossRef]
- Villanueva, G.L.; Smith, M.D.; Protopapa, S.; Faggi, S.; Mandell, A.M. Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 86–104. [Google Scholar] [CrossRef]
- Kasting, J.F.; Brown, L.L. The early atmosphere as a source of biogenic compounds. In The Molecular Origins of Life: Assembling Pieces of the Puzzle; Brack, A., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 35–56. [Google Scholar] [CrossRef]
- Kasting, J.F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 1988, 74, 472–494. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochem. Photobiol. 2021, 97, 136–165. [Google Scholar] [CrossRef] [PubMed]
- Sirohiwal, A.; Berraud-Pache, R.; Neese, F.; Izsák, R.; Pantazis, D.A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B 2020, 124, 8761–8771. [Google Scholar] [CrossRef]
- Mirkovic, T.; Ostroumov, E.E.; Anna, J.M.; van Grondelle, R.; Govindjee; Scholes, G.D. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem. Rev. 2017, 117, 249–293. [Google Scholar] [CrossRef]
- Kurashov, V.; Ho, M.Y.; Shen, G.; Piedl, K.; Laremore, T.N.; Bryant, D.A.; Golbeck, J.H. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynth. Res. 2019, 141, 151–163. [Google Scholar] [CrossRef]
- Claudi, R.; Alei, E.; Battistuzzi, M.; Cocola, L.; Erculiani, M.S.; Pozzer, A.C.; Salasnich, B.; Simionato, D.; Squicciarini, V.; Poletto, L.; et al. Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.; Deshpande, R. Habitable Zones around Main-sequence Stars: New Estimates. Astrophys. J. 2013, 765, 131. [Google Scholar] [CrossRef]
- McKay, C.P. Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. USA 2014, 111, 12628–12633. Available online: https://www.pnas.org/content/111/35/12628.full.pdf (accessed on 22 November 2022). [PubMed]
- Hashimoto, G.L.; Abe, Y.; Sugita, S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. Planets 2007, 112, 5010. [Google Scholar] [CrossRef]
- Henry, T.J.; Jao, W.C.; Subasavage, J.P.; Beaulieu, T.D.; Ianna, P.A.; Costa, E.; Méndez, R.A. The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample. Astron. J. 2006, 132, 2360–2371. [Google Scholar] [CrossRef]
- Reylé, C.; Jardine, K.; Fouqué, P.; Caballero, J.A.; Smart, R.L.; Sozzetti, A. The 10 parsec sample in the Gaia era. A&A 2021, 650, A201. [Google Scholar] [CrossRef]
Exopl. Atmos. | ppfd [mol photon m−2 s−1] | Pigment | [s−1] | [s−1] | [s−1] |
---|---|---|---|---|---|
Earth- like | 2115.69 | BChl a | 11.51 | 2.47 | 9.04 |
BChl b | 14.07 | 4.54 | 9.52 | ||
Chl a | 9.20 | 4.65 | 4.55 | ||
Chl b | 11.14 | 7.51 | 3.63 | ||
Phot0 | 6.72 | 1.33 | 5.39 | ||
Highly oxidizing | 1950.40 | BChl a | 13.35 | 3.32 | 10.02 |
BChl b | 16.30 | 5.77 | 10.53 | ||
Chl a | 10.82 | 5.92 | 4.90 | ||
Chl b | 12.90 | 8.95 | 3.95 | ||
Phot0 | 8.00 | 2.01 | 5.99 | ||
Weakly oxidizing | 2168.68 | BChl a | 12.23 | 2.46 | 9.77 |
BChl b | 14.79 | 4.50 | 10.28 | ||
Chl a | 9.37 | 4.65 | 4.72 | ||
Chl b | 11.26 | 7.48 | 3.78 | ||
Phot0 | 7.15 | 1.32 | 5.84 | ||
Reducing | 2338.10 | BChl a | 11.03 | 1.64 | 9.39 |
BChl b | 13.13 | 3.21 | 9.92 | ||
Chl a | 7.82 | 3.36 | 4.46 | ||
Chl b | 9.39 | 5.84 | 3.54 | ||
Phot0 | 6.34 | 0.73 | 5.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Arenal, P.; Cerdán, L.; Burillo-Villalobos, M.; Fonseca-Bonilla, N.; de la Concepción, J.G.; López-Cayuela, M.Á.; Gómez, F.; Caballero, J.A. ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness. Universe 2022, 8, 624. https://doi.org/10.3390/universe8120624
Marcos-Arenal P, Cerdán L, Burillo-Villalobos M, Fonseca-Bonilla N, de la Concepción JG, López-Cayuela MÁ, Gómez F, Caballero JA. ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness. Universe. 2022; 8(12):624. https://doi.org/10.3390/universe8120624
Chicago/Turabian StyleMarcos-Arenal, Pablo, Luis Cerdán, Mercedes Burillo-Villalobos, Nuria Fonseca-Bonilla, Juan García de la Concepción, María Ángeles López-Cayuela, Felipe Gómez, and José A. Caballero. 2022. "ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness" Universe 8, no. 12: 624. https://doi.org/10.3390/universe8120624
APA StyleMarcos-Arenal, P., Cerdán, L., Burillo-Villalobos, M., Fonseca-Bonilla, N., de la Concepción, J. G., López-Cayuela, M. Á., Gómez, F., & Caballero, J. A. (2022). ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness. Universe, 8(12), 624. https://doi.org/10.3390/universe8120624