𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories
Abstract
:1. Introduction
2. Intriligator-Seiberg Curves
2.1. General Principles
2.2. Examples
2.2.1. Pure Gauge Theory
2.2.2. Gauge Theory
3. IR Curves of Class Theories
3.1. Classical Analysis
3.2. Mass Parameters
3.3. Curves for
3.3.1. Diagonal Limit
3.3.2. Limit
3.3.3. Checks
3.4. Curve for General N
3.4.1. Diagonal Limit
3.4.2. Limit
3.5. Curve for General N & k
4. UV Curves of Class Theories
4.1. Review of UV Curves of Class Theories
4.2. Class
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
1 | The “diagonal” quark masses can be calculated by solving the F-term’s for , , , . |
2 | Note that to save on various factors of we define instead of , accounting for factor 4 instead of 16. |
3 | For example the term explodes unless . |
4 | Notice that the definition of in this paper differs from that in [15] by and . |
References
- Seiberg, N.; Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. 1994, 426, 19–52. [Google Scholar] [CrossRef] [Green Version]
- Seiberg, N.; Witten, E. Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. 1994, 431, 484–550. [Google Scholar] [CrossRef] [Green Version]
- Intriligator, K.A.; Seiberg, N. Phases of N = 1 supersymmetric gauge theories in four-dimensions. Nucl. Phys. 1994, 431, 551–568. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, Y.; Yonekura, K. N = 1 curves for trifundamentals. J. High Energy Phys. 2011, 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Maruyoshi, K.; Tachikawa, Y.; Yan, W.; Yonekura, K. = 1 dynamics with TN theory. J. High Energy Phys. 2013, 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Yonekura, K. Generalized Hitchin system, Spectral curve and = 1 dynamics. J. High Energy Phys. 2014, 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, G.; Giacomelli, S.; Maruyoshi, K.; Tanzini, A. N = 1 Geometries via M-theory. J. High Energy Phys. 2013, 2013, 227. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, S. Four dimensional superconformal theories from M5 branes. J. High Energy Phys. 2015, 2015, 44. [Google Scholar] [CrossRef] [Green Version]
- Xie, D. N = 1 Curve. arXiv 2014, arXiv:1409.8306. [Google Scholar]
- Tachikawa, Y. Lectures on 4d N = 1 dynamics and related topics. arXiv 2018, arXiv:1812.08946. [Google Scholar]
- Bah, I.; Beem, C.; Bobev, N.; Wecht, B. Four-Dimensional SCFTs from M5-Branes. J. High Energy Phys. 2012, 2012, 5. [Google Scholar] [CrossRef] [Green Version]
- Gaiotto, D.; Razamat, S.S. = 1 theories of class k. J. High Energy Phys. 2015, 2015, 73. [Google Scholar] [CrossRef] [Green Version]
- Gaiotto, D. N = 2 dualities. J. High Energy Phys. 2012, 2012, 34. [Google Scholar] [CrossRef] [Green Version]
- Gaiotto, D.; Moore, G.W.; Neitzke, A. Wall-crossing, Hitchin Systems, and the WKB Approximation. Adv. Math. 2013, 234, 239–403. [Google Scholar] [CrossRef] [Green Version]
- Coman, I.; Pomoni, E.; Taki, M.; Yagi, F. Spectral curves of = 1 theories of class k. arXiv 2015, arXiv:1512.06079. [Google Scholar]
- Mitev, V.; Pomoni, E. 2D CFT blocks for the 4D class k theories. J. High Energy Phys. 2017, 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Bourton, T.; Pomoni, E. Instanton counting in class k. J. Phys. A 2020, 53, 165401. [Google Scholar] [CrossRef]
- Bah, I.; Hanany, A.; Maruyoshi, K.; Razamat, S.S.; Tachikawa, Y.; Zafrir, G. 4d = 1 from 6d = (1, 0) on a torus with fluxes. J. High Energy Phys. 2017, 2017, 22. [Google Scholar] [CrossRef]
- Razamat, S.S.; Sabag, E. A freely generated ring for = 1 models in class k. J. High Energy Phys. 2018, 2018, 150. [Google Scholar] [CrossRef] [Green Version]
- Bourton, T.; Pini, A.; Pomoni, E. The Coulomb and Higgs branches of = 1 theories of Class k. J. High Energy Phys. 2021, 2021, 137. [Google Scholar] [CrossRef]
- Razamat, S.S.; Vafa, C.; Zafrir, G. 4d = 1 from 6d (1, 0). J. High Energy Phys. 2017, 2017, 64. [Google Scholar] [CrossRef]
- Heckman, J.J.; Jefferson, P.; Rudelius, T.; Vafa, C. Punctures for theories of class Γ. J. High Energy Phys. 2017, 2017, 171. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-C.; Razamat, S.S.; Vafa, C.; Zafrir, G. E-String Theory on Riemann Surfaces. Fortsch. Phys. 2018, 66, 1700074. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-C.; Razamat, S.S.; Vafa, C.; Zafrir, G. Compactifications of ADE conformal matter on a torus. J. High Energy Phys. 2018, 2018, 110. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-C.; Razamat, S.S.; Vafa, C.; Zafrir, G. D-type Conformal Matter and SU/USp Quivers. J. High Energy Phys. 2018, 2018, 58. [Google Scholar] [CrossRef] [Green Version]
- Apruzzi, F.; Heckman, J.J.; Morrison, D.R.; Tizzano, L. 4D Gauge Theories with Conformal Matter. J. High Energy Phys. 2018, 2018, 88. [Google Scholar] [CrossRef] [Green Version]
- Razamat, S.S.; Sabag, E. Sequences of 6d SCFTs on generic Riemann surfaces. J. High Energy Phys. 2020, 2020, 86. [Google Scholar] [CrossRef] [Green Version]
- Razamat, S.S.; Sabag, E. SQCD and pairs of pants. J. High Energy Phys. 2020, 2020, 28. [Google Scholar] [CrossRef]
- Chen, J.; Haghighat, B.; Kim, H.-C.; Sperling, M.; Wang, X. E-string Quantum Curve. arXiv 2021, arXiv:2103.16996. [Google Scholar] [CrossRef]
- Nazzal, B.; Nedelin, A.; Razamat, S.S. Minimal (D, D) conformal matter and generalizations of the van Diejen model. arXiv 2021, arXiv:2106.08335. [Google Scholar]
- Witten, E. Branes and the dynamics of QCD. Nucl. Phys. B 1997, 507, 658–690. [Google Scholar] [CrossRef] [Green Version]
- Seiberg, N. Exact results on the space of vacua of four-dimensional SUSY gauge theories. Phys. Rev. 1994, 49, 6857–6863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csaki, C.; Erlich, J.; Freedman, D.Z.; Skiba, W. N = 1 supersymmetric product group theories in the Coulomb phase. Phys. Rev. 1997, 56, 5209–5217. [Google Scholar]
- Leigh, R.G.; Strassler, M.J. Accidental symmetries and N = 1 duality in supersymmetric gauge theory. Nucl. Phys. 1997, 496, 132–148. [Google Scholar] [CrossRef] [Green Version]
- Argyres, P.C.; Plesser, M.R.; Shapere, A.D. The Coulomb phase of N = 2 supersymmetric QCD. Phys. Rev. Lett. 1995, 75, 1699–1702. [Google Scholar] [CrossRef] [Green Version]
- Gremm, M. The Coulomb branch of N = 1 supersymmetric SU(N(c)) × SU(N(c)) gauge theories. Phys. Rev. 1998, 57, 2537–2542. [Google Scholar]
- Witten, E. Solutions of four-dimensional field theories via M theory. Nucl. Phys. 1997, 500, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, N.A. Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 2003, 7, 831–864. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, N.; Okounkov, A. Seiberg-Witten theory and random partitions. Prog. Math. 2006, 244, 525–596. [Google Scholar]
- Nekrasov, N.; Pestun, V. Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories. arXiv 2012, arXiv:1211.2240. [Google Scholar]
- Zhang, X. Seiberg-Witten geometry of four-dimensional N = 2 SO–USp quiver gauge theories. Phys. Rev. D 2019, 100, 125015. [Google Scholar] [CrossRef] [Green Version]
- Hanany, A.; Zaffaroni, A. On the realization of chiral four-dimensional gauge theories using branes. J. High Energy Phys. 1998, 1998, 1. [Google Scholar] [CrossRef] [Green Version]
- Hanany, A.; Uranga, A.M. Brane boxes and branes on singularities. J. High Energy Phys. 1998, 1998, 13. [Google Scholar] [CrossRef] [Green Version]
- Haah, J. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 2011, 83, 042330. [Google Scholar] [CrossRef] [Green Version]
- Razamat, S.S. Quivers and Fractons. Phys. Rev. Lett. 2021, 127, 141603. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Kachru, S.; Karch, A.; Nally, R.; Rayhaun, B.C. Fractons and exotic symmetries from branes. Fortsch. Phys. 2021, 69, 2100133. [Google Scholar] [CrossRef]
- Vijay, S.; Haah, J.; Fu, L. A New Kind of Topological Quantum Order: A Dimensional Hierarchy of Quasiparticles Built from Stationary Excitations. Phys. Rev. B 2015, 92, 235136. [Google Scholar] [CrossRef] [Green Version]
- Nandkishore, R.M.; Hermele, M. Fractons. Ann. Rev. Condensed Matter Phys. 2019, 10, 295–313. [Google Scholar] [CrossRef] [Green Version]
- Pretko, M.; Chen, X.; You, Y. Fracton Phases of Matter. Int. J. Mod. Phys. A 2020, 35, 2030003. [Google Scholar] [CrossRef]
- Seiberg, N.; Shao, S.-H. Exotic Symmetries, Duality, and Fractons in 2 + 1-Dimensional Quantum Field Theory. SciPost Phys. 2021, 10, 27. [Google Scholar] [CrossRef]
Adj | 0 | 0 | 0 | 0 | |||
−1 | 0 | −1 | +1 | ||||
+1/2 | −1 | +1 | 0 | ||||
+1/2 | +1 | 0 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourton, T.; Pomoni, E.; Zhang, X. 𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories. Universe 2022, 8, 101. https://doi.org/10.3390/universe8020101
Bourton T, Pomoni E, Zhang X. 𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories. Universe. 2022; 8(2):101. https://doi.org/10.3390/universe8020101
Chicago/Turabian StyleBourton, Thomas, Elli Pomoni, and Xinyu Zhang. 2022. "𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories" Universe 8, no. 2: 101. https://doi.org/10.3390/universe8020101
APA StyleBourton, T., Pomoni, E., & Zhang, X. (2022). 𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories. Universe, 8(2), 101. https://doi.org/10.3390/universe8020101