RR Lyrae and Type II Cepheid Variables in Globular Clusters: Optical and Infrared Properties
Abstract
:1. Introduction
2. Evolution of RR Lyrae and Type II Cepheids
3. RR Lyrae Variables
3.1. Multiband Light Curves
3.2. Color–Magnitude Diagrams
3.3. The Bailey Diagrams and the Oosterhoff Dichotomy
3.4. The Visual Magnitude–Metallicity Relation
3.5. Multiband Period–Luminosity Relations
3.6. Period–Luminosity–Metallicity Relations
4. Type II Cepheids
4.1. Multiband Light Curves
4.2. Color–Magnitude and Period–Amplitude Diagrams
4.3. Period–Luminosity Relations
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | We exclusively use “BL Her”, “ W Vir”, and “RV Tau” to refer to the subclasses of type II Cepheids based on their prototype star—BL Herculis, W Virginis, and RV Tauri, respectively. |
References
- Harris, W.E. Globular cluster systems in galaxies beyond the Local Group. Annu. Rev. Astron. Astrophys. 1991, 29, 543–579. [Google Scholar] [CrossRef]
- Brodie, J.P.; Strader, J. Extragalactic Globular Clusters and Galaxy Formation. Annu. Rev. Astron. Astrophys. 2006, 44, 193–267. [Google Scholar] [CrossRef] [Green Version]
- Marín-Franch, A.; Aparicio, A.; Piotto, G.; Rosenberg, A.; Chaboyer, B.; Sarajedini, A.; Siegel, M.; Anderson, J.; Bedin, L.R.; Dotter, A.; et al. The ACS Survey of Galactic Globular Clusters. VII. Relative Ages. Astrophys. J. 2009, 694, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Pickering, E.C. Variable Star in Cluster G.C. 3636. Astronomische Nachrichten 1889, 123, 207. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.I. A discussion of variable stars in the cluster ω Centauri. Ann. Harv. Coll. Obs. 1902, 38, 252. [Google Scholar]
- Schönfeld, E. Jahresber. Mannh. Phys. Soc. 1866, 32, 239, reprinted in Mon. Not. R. Astron. Soc. 1892, 52, 239. Available online: https://adsabs.harvard.edu/full/1892MNRAS..52Q.239 (accessed on 8 February 2022).
- Ceraski, W. Trois nouvelles variables. Astronomische Nachrichten 1905, 168, 29. [Google Scholar] [CrossRef] [Green Version]
- Hoffmeister, C. 354 neue Veränderliche. Astronomische Nachrichten 1929, 236, 233. [Google Scholar] [CrossRef]
- Joy, A.H. Radial Velocities of Cepheid Variable Stars. Astrophys. J. 1937, 86, 363. [Google Scholar] [CrossRef]
- Wallerstein, G.; Cox, A.N. The population II Cepheids. Publ. Astron. Soc. Pac. 1984, 96, 677–691. [Google Scholar] [CrossRef]
- Baade, W. The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. Astrophys. J. 1944, 100, 137. [Google Scholar] [CrossRef]
- Gratton, R.G.; Carretta, E.; Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. Rev. 2012, 20, 50. [Google Scholar] [CrossRef] [Green Version]
- Bastian, N.; Lardo, C. Multiple Stellar Populations in Globular Clusters. Annu. Rev. Astron. Astrophys. 2018, 56, 83–136. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A.; Wallerstein, G. Color-Magnitude Diagram for Disk Globular Cluster NGC 6356 Compared with Halo Clusters. Astrophys. J. 1960, 131, 598. [Google Scholar] [CrossRef]
- Catelan, M. Horizontal branch stars: The interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys. Space Sci. 2009, 320, 261–309. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Renzini, A.; D’Antona, F.; Anderson, J.; Barbuy, B.; Bedin, L.R.; Bellini, A.; Brown, T.M.; Cassisi, S.; et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVI. The helium abundance of multiple populations. Mon. Not. R. Astron. Soc. 2018, 481, 5098–5122. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.A. RR Lyrae stars. RR Lyrae Stars; Cambridge Astrophysics Series 27; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Wallerstein, G. The Cepheids of Population II and Related Stars. Publ. Astron. Soc. Pac. 2002, 114, 689–699. [Google Scholar] [CrossRef]
- Catelan, M.; Pritzl, B.J.; Smith, H.A. The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration. Astrophys. J. Suppl. Ser. 2004, 154, 633–649. [Google Scholar] [CrossRef]
- Sandage, A.; Tammann, G.A. Absolute Magnitude Calibrations of Population I and II Cepheids and Other Pulsating Variables in the Instability Strip of the Hertzsprung-Russell Diagram. Annu. Rev. Astron. Astrophys. 2006, 44, 93–140. [Google Scholar] [CrossRef]
- McWilliam, A. RR Lyrae Stars, Metal-Poor Stars, and the Galaxy. In Carnegie Astrophysics Series; The Observatories of the Carnegie Institution of Washington: Pasadena, CA, USA, 2011; Volume 5. [Google Scholar]
- Beaton, R.L.; Bono, G.; Braga, V.F.; Dall’Ora, M.; Fiorentino, G.; Jang, I.S.; Martínez-Vázquez, C.E.; Matsunaga, N.; Monelli, M.; Neeley, J.R.; et al. Old-Aged Primary Distance Indicators. Space Sci. Rev. 2018, 214, 113. [Google Scholar] [CrossRef]
- Matsunaga, N.; Bono, G.; Chen, X.; de Grijs, R.; Inno, L.; Nishiyama, S. Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers. Space Sci. Rev. 2018, 214, 74. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A. High-precision distance measurements with classical pulsating stars. J. Astrophys. Astron. 2020, 41, 23. [Google Scholar] [CrossRef]
- Sandage, A.; Katem, B.; Sandage, M. The Oosterhoff period groups and the age of globular clusters. I. Photometry of cluster variables in M 15. Astrophys. J. Suppl. Ser. 1981, 46, 41–74. [Google Scholar] [CrossRef]
- Jurcsik, J.; Smitola, P.; Hajdu, G.; Sódor, Á.; Nuspl, J.; Kolenberg, K.; Furész, G.; Moór, A.; Kun, E.; Pál, A.; et al. Overtone and Multi-mode RR Lyrae Stars in the Globular Cluster M3. Astrophys. J. Suppl. Ser. 2015, 219, 25. [Google Scholar] [CrossRef]
- Soszyński, I.; Udalski, A.; Szymański, M.K.; Wyrzykowski; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.M.; Skowron, J.; et al. The OGLE Collection of Variable Stars. Classical, Type II, and Anomalous Cepheids toward the Galactic Center. Acta Astron. 2017, 67, 297–316. [Google Scholar]
- Soszyński, I.; Udalski, A.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski; Szewczyk, O.; Ulaczyk, K.; Poleski, R. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. II.Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud. Acta Astron. 2008, 58, 293. [Google Scholar]
- Soszyński, I.; Smolec, R.; Udalski, A.; Pietrukowicz, P. Type II Cepheids Pulsating in the First Overtone from the OGLE Survey. Astrophys. J. 2019, 873, 43. [Google Scholar] [CrossRef] [Green Version]
- Kippenhahn, R.; Weigert, A. Book Review: Stellar structure and evolution/Springer-Verlag, 1990. Space Sci. Rev. 1991, 58, 190. [Google Scholar]
- Salaris, M.; Cassisi, S. Evolution of Stars and Stellar Populations; Wiley-VCH: Hoboken, NJ, USA, 2005; p. 400. ISBN 0-470-09220-3. [Google Scholar]
- Catelan, M.; Smith, H.A. Pulsating Stars; Wiley-VCH: Hoboken, NJ, USA, 2015. [Google Scholar]
- Marconi, M.; Coppola, G.; Bono, G.; Braga, V.; Pietrinferni, A.; Buonanno, R.; Castellani, M.; Musella, I.; Ripepi, V.; Stellingwerf, R.F. On a New Theoretical Framework for RR Lyrae Stars. I. The Metallicity Dependence. Astrophys. J. 2015, 808, 50. [Google Scholar] [CrossRef] [Green Version]
- Bono, G.; Caputo, F.; Cassisi, S.; Castellani, V.; Marconi, M. Metal-rich RR Lyrae Variables. I. The Evolutionary Scenario. Astrophys. J. 1997, 479, 279–289. [Google Scholar] [CrossRef]
- Gingold, R.A. The evolutionary status of population II cepheids. Astrophys. J. 1976, 204, 116–130. [Google Scholar] [CrossRef]
- Bono, G.; Caputo, F.; Santolamazza, P. Evolutionary scenario for metal-poor pulsating stars. I. Type II Cepheids. Astron. Astrophys. 1997, 317, 171–177. [Google Scholar]
- Groenewegen, M.A.T.; Jurkovic, M.I. Luminosities and infrared excess in Type II and anomalous Cepheids in the Large and Small Magellanic Clouds. Astron. Astrophys. 2017, 603, A70. [Google Scholar] [CrossRef] [Green Version]
- Groenewegen, M.A.T.; Jurkovic, M.I. The period-luminosity and period-radius relations of Type II and anomalous Cepheids in the Large and Small Magellanic Clouds. Astron. Astrophys. 2017, 604, A29. [Google Scholar] [CrossRef] [Green Version]
- Manick, R.; Van Winckel, H.; Kamath, D.; Sekaran, S.; Kolenberg, K. The evolutionary nature of RV Tauri stars in the SMC and LMC. Astron. Astrophys. 2018, 618, A2. [Google Scholar] [CrossRef] [Green Version]
- Clement, C.M.; Muzzin, A.; Dufton, Q.; Ponnampalam, T.; Wang, J.; Burford, J.; Richardson, A.; Rosebery, T.; Rowe, J.; Hogg, H.S. Variable Stars in Galactic Globular Clusters. Astrophys. J. 2001, 122, 2587–2599. [Google Scholar] [CrossRef] [Green Version]
- Corwin, T.M.; Borissova, J.; Stetson, P.B.; Catelan, M.; Smith, H.A.; Kurtev, R.; Stephens, A.W. The Globular Cluster M15. I. Identification, Discovery, and Period Determination of Variable Stars. Astrophys. J. 2008, 135, 1459–1473. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Rejkuba, M.; Sloan, G.C.; Marconi, M.; Yang, S.C. Optical and Near-infrared Pulsation Properties of RR Lyrae and Population II Cepheid Variables in the Messier 15 Globular Cluster. Astrophys. J. 2021, 922, 20. [Google Scholar] [CrossRef]
- Arellano Ferro, A.; Bramich, D.M.; Figuera Jaimes, R.; Giridhar, S.; Kuppuswamy, K. The unusually large population of Blazhko variables in the globular cluster NGC 5024 (M53). Mon. Not. R. Astron. Soc. 2012, 420, 1333–1346. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Rejkuba, M.; de Grijs, R.; Yang, S.C.; Herczeg, G.J.; Marconi, M.; Singh, H.P.; Kanbur, S.; Ngeow, C.C. RR Lyrae Variables in Messier 53: Near-infrared Period-Luminosity Relations and the Calibration Using Gaia Early Data Release 3. Astrophys. J. 2021, 909, 200. [Google Scholar] [CrossRef]
- Soszyński, I.; Udalski, A.; Wrona, M.; Szymański, M.K.; Pietrukowicz, P.; Skowron, J.; Skowron, D.; Poleski, R.; Kozłowski, S.; Mróz, P.; et al. Over 78 000 RR Lyrae Stars in the Galactic Bulge and Disk from the OGLE Survey. Acta Astron. 2019, 69, 321–337. [Google Scholar] [CrossRef]
- Alonso-García, J.; Smith, L.C.; Catelan, M.; Minniti, D.; Navarrete, C.; Borissova, J.; Carballo-Bello, J.A.; Contreras Ramos, R.; Fernández-Trincado, J.G.; Ferreira Lopes, C.E.; et al. Variable stars in the VVV globular clusters. II. NGC 6441, NGC 6569, NGC 6626 (M 28), NGC 6656 (M 22), 2MASS-GC 02, and Terzan 10. Astron. Astrophys. 2021, 651, A47. [Google Scholar] [CrossRef]
- Braga, V.F.; Stetson, P.B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Freyhammer, L.M.; Iannicola, G.; Marengo, M.; Neeley, J.; et al. On the RR Lyrae Stars in Globulars. IV. ω Centauri Optical UBVRI Photometry. Astrophys. J. 2016, 152, 170. [Google Scholar] [CrossRef] [Green Version]
- Braga, V.F.; Stetson, P.B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A.J.; et al. On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK s) Census of ω Centauri RR Lyrae Variables. Astrophys. J. 2018, 155, 137. [Google Scholar] [CrossRef]
- Jurcsik, J.; Hajdu, G.; Dékány, I.; Nuspl, J.; Catelan, M.; Grebel, E.K. Blazhko modulation in the infrared. Mon. Not. R. Astron. Soc. 2018, 475, 4208–4222. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Rejkuba, M.; de Grijs, R.; Herczeg, G.J.; Singh, H.P.; Kanbur, S.; Ngeow, C.C. Near-infrared Census of RR Lyrae Variables in the Messier 3 Globular Cluster and the Period-Luminosity Relations. Astrophys. J. 2020, 160, 220. [Google Scholar] [CrossRef]
- Arellano Ferro, A.; Luna, A.; Bramich, D.M.; Giridhar, S.; Ahumada, J.A.; Muneer, S. RR Lyrae stars and the horizontal branch of NGC 5904 (M5). Astrophys. Space Sci. 2016, 361, 175. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Dall’Ora, M.; Ripepi, V.; Marconi, M.; Musella, I.; Bono, G.; Piersimoni, A.M.; Stetson, P.B.; Storm, J. Distance to Galactic globulars using the near-infrared magnitudes of RR Lyrae stars—IV. The case of M5 (NGC 5904). Mon. Not. R. Astron. Soc. 2011, 416, 1056–1066. [Google Scholar] [CrossRef] [Green Version]
- Stetson, P.B.; Braga, V.F.; Dall’Ora, M.; Bono, G.; Buonanno, R.; Ferraro, I.; Iannicola, G.; Marengo, M.; Neeley, J. Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121). Publ. Astron. Soc. Pac. 2014, 126, 521. [Google Scholar] [CrossRef] [Green Version]
- Carretta, E.; Bragaglia, A.; Gratton, R.; D’Orazi, V.; Lucatello, S. Intrinsic iron spread and a new metallicity scale for globular clusters. Astron. Astrophys. 2009, 508, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Baumgardt, H.; Vasiliev, E. Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST and literature data. arXiv 2021, arXiv:2105.09526. [Google Scholar] [CrossRef]
- Madore, B.F.; Freedman, W.L. The Cepheid distance scale. Publ. Astron. Soc. Pac. 1991, 103, 933–957. [Google Scholar] [CrossRef] [Green Version]
- Macri, L.M.; Ngeow, C.C.; Kanbur, S.M.; Mahzooni, S.; Smitka, M.T. Large Magellanic Cloud Near-Infrared Synoptic Survey. I. Cepheid Variables and the Calibration of the Leavitt Law. Astrophys. J. 2015, 149, 117. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kanbur, S.M.; Singh, H.P.; Macri, L.M.; Ngeow, C.C. On the variation of Fourier parameters for Galactic and LMC Cepheids at optical, near-infrared and mid-infrared wavelengths. Mon. Not. R. Astron. Soc. 2015, 447, 3342–3360. [Google Scholar] [CrossRef] [Green Version]
- Bono, G.; Caputo, F.; Cassisi, S.; Marconi, M.; Piersanti, L.; Tornambè, A. Intermediate-Mass Star Models with Different Helium and Metal Contents. Astrophys. J. 2000, 543, 955–971. [Google Scholar] [CrossRef]
- Simon, N.R.; Lee, A.S. The structural properties of Cepheid light curves. Astrophys. J. 1981, 248, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Singh, H.P. Light curve analysis of variable stars using Fourier decomposition and principal component analysis. Astron. Astrophys. 2009, 507, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.R.; Teays, T.J. The light curves of RR Lyrae field stars. Astrophys. J. 1982, 261, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Bono, G.; Incerpi, R.; Marconi, M. Metallicity Effects on RR Lyrae Variables. Astrophys. J. Lett. 1996, 467, L97. [Google Scholar] [CrossRef] [Green Version]
- Marconi, M.; Musella, I.; Fiorentino, G. Cepheid Pulsation Models at Varying Metallicity and ΔY/ΔZ. Astrophys. J. 2005, 632, 590–610. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Bhardwaj, A.; Kanbur, S.M.; Singh, H.P.; Marconi, M. On the variation of light curve parameters of RR Lyrae variables at multiple wavelengths. Mon. Not. R. Astron. Soc. 2018, 481, 2000–2017. [Google Scholar] [CrossRef]
- Jurcsik, J.; Kovacs, G. Determination of [Fe/H] from the light curves of RR Lyrae stars. Astron. Astrophys. 1996, 312, 111–120. [Google Scholar]
- Nemec, J.M.; Cohen, J.G.; Ripepi, V.; Derekas, A.; Moskalik, P.; Sesar, B.; Chadid, M.; Bruntt, H. Metal Abundances, Radial Velocities, and Other Physical Characteristics for the RR Lyrae Stars in The Kepler Field. Astrophys. J. 2013, 773, 181. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, E.P.; Kanbur, S.M.; Bhardwaj, A.; Marconi, M. When a period is not a full stop: Light-curve structure reveals fundamental parameters of Cepheid and RR Lyrae stars. Mon. Not. R. Astron. Soc. 2020, 491, 4752–4767. [Google Scholar] [CrossRef]
- Blažko, S. Mitteilung über veränderliche Sterne. Astronomische Nachrichten 1907, 175, 325. [Google Scholar] [CrossRef] [Green Version]
- Jurcsik, J.; Sódor, Á.; Szeidl, B.; Hurta, Z.; Váradi, M.; Posztobányi, K.; Vida, K.; Hajdu, G.; Kovári, Z.; Nagy, I.; et al. The Konkoly Blazhko Survey: Is light-curve modulation a common property of RRab stars? Mon. Not. R. Astron. Soc. 2009, 400, 1006–1018. [Google Scholar] [CrossRef] [Green Version]
- Kolenberg, K.; Szabó, R.; Kurtz, D.W.; Gilliland, R.L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T.M.; Benko, J.M.; Chadid, M.; Derekas, A.; et al. First Kepler Results on RR Lyrae Stars. Astrophys. J. Lett. 2010, 713, L198–L203. [Google Scholar] [CrossRef] [Green Version]
- Szabó, R.; Kolláth, Z.; Molnár, L.; Kolenberg, K.; Kurtz, D.W.; Bryson, S.T.; Benko, J.M.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Borucki, W.J.; et al. Does Kepler unveil the mystery of the Blazhko effect? First detection of period doubling in Kepler Blazhko RR Lyrae stars. Mon. Not. R. Astron. Soc. 2010, 409, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Skarka, M.; Prudil, Z.; Jurcsik, J. Blazhko effect in the Galactic bulge fundamental mode RR Lyrae stars - II. Modulation shapes, amplitudes, and periods. Mon. Not. R. Astron. Soc. 2020, 494, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Molnár, L.; Bódi, A.; Pál, A.; Bhardwaj, A.; Hambsch, F.J.; Benko, J.M.; Derekas, A.; Ebadi, M.; Joyce, M.; Hasanzadeh, A.; et al. First Results on RR Lyrae Stars with the TESS Space Telescope: Untangling the Connections between Mode Content, Colors, and Distances. Astrophys. J. Suppl. Ser. 2022, 258, 8. [Google Scholar] [CrossRef]
- Jurcsik, J. Blazhko-type fundamental-mode RR Lyrae stars in the globular cluster M3. Mon. Not. R. Astron. Soc. 2019, 490, 80–95. [Google Scholar] [CrossRef]
- Hendricks, B.; Stetson, P.B.; VandenBerg, D.A.; Dall’Ora, M. A New Reddening Law for M4. Astrophys. J. 2012, 144, 25. [Google Scholar] [CrossRef] [Green Version]
- Calamida, A.; Stetson, P.B.; Bono, G.; Freyhammer, L.M.; Grundahl, F.; Hilker, M.; Andersen, M.I.; Buonanno, R.; Cassisi, S.; Corsi, C.E.; et al. Reddening Distribution across the Center of the Globular Cluster ω Centauri. Astrophys. J. Lett. 2005, 634, L69–L72. [Google Scholar] [CrossRef]
- Bono, G.; Caputo, F.; Castellani, V.; Marconi, M.; Storm, J.; Degl’Innocenti, S. A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars. Mon. Not. R. Astron. Soc. 2003, 344, 1097–1106. [Google Scholar] [CrossRef]
- Cardelli, J.A.; Clayton, G.C.; Mathis, J.S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 1989, 345, 245–256. [Google Scholar] [CrossRef]
- Braga, V.F.; Dall’Ora, M.; Bono, G.; Stetson, P.B.; Ferraro, I.; Iannicola, G.; Marengo, M.; Neeley, J.; Persson, S.E.; Buonanno, R.; et al. On the Distance of the Globular Cluster M4 (NGC 6121) Using RR Lyrae Stars. I. Optical and Near-infrared Period-Luminosity and Period-Wesenheit Relations. Astrophys. J. 2015, 799, 165. [Google Scholar] [CrossRef] [Green Version]
- Magurno, D.; Sneden, C.; Bono, G.; Braga, V.F.; Mateo, M.; Persson, S.E.; Preston, G.; Thévenin, F.; da Silva, R.; Dall’Ora, M.; et al. Chemical Compositions of Field and Globular Cluster RR Lyrae Stars. II. ω Centauri. Astrophys. J. 2019, 881, 104. [Google Scholar] [CrossRef]
- Oosterhoff, P.T. Some remarks on the variable stars in globular clusters. Observatory 1939, 62, 104–109. [Google Scholar]
- van Albada, T.S.; Baker, N. On the Two Oosterhoff Groups of Globular Clusters. Astrophys. J. 1973, 185, 477–498. [Google Scholar] [CrossRef]
- Sandage, A. Cepheids in Galactic Clusters. I. CF Cass in NGC 7790. Astrophys. J. 1958, 128, 150. [Google Scholar] [CrossRef]
- Renzini, A. Current problems in the interpretation of the characteristics of globular clusters. Mem. Della Soc. Astron. Ital. 1983, 54, 335–354. [Google Scholar]
- Marconi, M.; Minniti, D. Gauging the Helium Abundance of the Galactic Bulge RR Lyrae Stars. Astrophys. J. Lett. 2018, 853, L20. [Google Scholar] [CrossRef]
- Jurkovic, M.I. Anomalous Cepheids Discovered in a Sample of Galactic Short Period Type II Cepheids. Serbian Astron. J. 2018, 197, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, C.; Corwin, T.M.; Carney, B.W. A Multicolor and Fourier Study of RR Lyrae Variables in the Globular Cluster NGC 5272 (M3). Astrophys. J. 2005, 129, 267–302. [Google Scholar] [CrossRef] [Green Version]
- Rood, R.T. Metal-Poor Stars. V. Horizontal-Branch Morphology. Astrophys. J. 1973, 184, 815–838. [Google Scholar] [CrossRef]
- Sweigart, A.V.; Catelan, M. The Second-Parameter Effect in Metal-rich Globular Clusters. Astrophys. J. Lett. 1998, 501, L63–L66. [Google Scholar] [CrossRef]
- Marconi, M.; Bono, G.; Pietrinferni, A.; Braga, V.F.; Castellani, M.; Stellingwerf, R.F. On the Impact of Helium Content on the RR Lyrae Distance Scale. Astrophys. J. Lett. 2018, 864, L13. [Google Scholar] [CrossRef]
- Sollima, A.; Borissova, J.; Catelan, M.; Smith, H.A.; Minniti, D.; Cacciari, C.; Ferraro, F.R. New Metallicities of RR Lyrae Stars in ω Centauri: Evidence for a Non-He-enhanced Metal-intermediate Population. Astrophys. J. Lett. 2006, 640, L43–L46. [Google Scholar] [CrossRef]
- Bono, G.; Caputo, F.; Di Criscienzo, M. RR Lyrae stars in Galactic globular clusters. VI. The period-amplitude relation. Astron. Astrophys. 2007, 476, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Kinemuchi, K.; Smith, H.A.; Woźniak, P.R.; McKay, T.A.; ROTSE Collaboration. Analysis of RR Lyrae Stars in the Northern Sky Variability Survey. Astrophys. J. 2006, 132, 1202–1220. [Google Scholar] [CrossRef]
- Kunder, A.; Chaboyer, B. An Oosterhoff Analysis of the Galactic Bulge Field RR Lyrae Stars: Implications on Their Absolute Magnitudes. Astrophys. J. 2009, 138, 1284–1291. [Google Scholar] [CrossRef] [Green Version]
- Corwin, T.M.; Borissova, J.; Catelan, M.; Smith, H.A.; Kurtev, R. Variable stars in the globular cluster M15. MmSAI 2006, 77, 107. [Google Scholar]
- Braga, V.F.; Bono, G.; Fiorentino, G.; Stetson, P.B.; Dall’Ora, M.; Salaris, M.; da Silva, R.; Fabrizio, M.; Marinoni, S.; Marrese, M.P.; et al. Separation between RR Lyrae and type II Cepheids and their importance for a distance determination: The case of omega Cen. Astron. Astrophys. 2020, 644, A95. [Google Scholar] [CrossRef]
- Rich, R.M.; Sosin, C.; Djorgovski, S.G.; Piotto, G.; King, I.R.; Renzini, A.; Phinney, E.S.; Dorman, B.; Liebert, J.; Meylan, G. Discovery of Extended Blue Horizontal Branches in Two Metal-rich Globular Clusters. Astrophys. J. Lett. 1997, 484, L25–L28. [Google Scholar] [CrossRef]
- McWilliam, A.; Zoccali, M. Two Red Clumps and the X-shaped Milky Way Bulge. Astrophys. J. 2010, 724, 1491–1502. [Google Scholar] [CrossRef]
- Bellini, A.; Piotto, G.; Milone, A.P.; King, I.R.; Renzini, A.; Cassisi, S.; Anderson, J.; Bedin, L.R.; Nardiello, D.; Pietrinferni, A.; et al. The Intriguing Stellar Populations in the Globular Clusters NGC 6388 and NGC 6441. Astrophys. J. 2013, 765, 32. [Google Scholar] [CrossRef] [Green Version]
- Braga, V.F.; Stetson, P.B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Inno, L.; Marengo, M.; Neeley, J.; et al. New near-infrared JHKs light-curve templates for RR Lyrae variables. Astron. Astrophys. 2019, 625, A1. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A. The Oosterhoff period groups and the age of globular clusters. III. The age of the globular cluster system. Astrophys. J. 1982, 252, 553–573. [Google Scholar] [CrossRef]
- Lee, Y.W.; Demarque, P.; Zinn, R. The Horizontal-Branch Stars in Globular Clusters. I. The Period-Shift Effect, the Luminosity of the Horizontal Branch, and the Age-Metallicity Relation. Astrophys. J. 1990, 350, 155. [Google Scholar] [CrossRef]
- Fernley, J.; Barnes, T.G.; Skillen, I.; Hawley, S.L.; Hanley, C.J.; Evans, D.W.; Solano, E.; Garrido, R. The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions. Astron. Astrophys. 1998, 330, 515–520. [Google Scholar]
- Caputo, F.; Castellani, V.; Marconi, M.; Ripepi, V. Pulsational MV versus [Fe/H] relation(s) for globular cluster RR Lyrae variables. Mon. Not. R. Astron. Soc. 2000, 316, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Clementini, G.; Gratton, R.; Bragaglia, A.; Carretta, E.; Di Fabrizio, L.; Maio, M. Distance to the Large Magellanic Cloud: The RR Lyrae Stars. Astrophys. J. 2003, 125, 1309–1329. [Google Scholar] [CrossRef]
- Muraveva, T.; Delgado, H.E.; Clementini, G.; Sarro, L.M.; Garofalo, A. RR Lyrae stars as standard candles in the Gaia Data Release 2 Era. Mon. Not. R. Astron. Soc. 2018, 481, 1195–1211. [Google Scholar] [CrossRef]
- Caputo, F. Evolution of Population II stars. Astron. Astrophys. Rev. 1998, 9, 33–61. [Google Scholar] [CrossRef]
- Longmore, A.J.; Fernley, J.A.; Jameson, R.F. RR Lyrae stars in globular clusters: Better distances from infrared measurements ? Mon. Not. R. Astron. Soc. 1986, 220, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Longmore, A.J.; Dixon, R.; Skillen, I.; Jameson, R.F.; Fernley, J.A. Globular cluster distances from the RR Lyrae log(period)—Infrared magnitude relation. Mon. Not. R. Astron. Soc. 1990, 247, 684. [Google Scholar] [CrossRef] [Green Version]
- Nemec, J.M.; Nemec, A.F.L.; Lutz, T.E. Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars. Astrophys. J. 1994, 108, 222–246. [Google Scholar] [CrossRef]
- Butler, D.J. The RR Lyrae star period—K-band luminosity relation of the globular cluster M 3. Astron. Astrophys. 2003, 405, 981–990. [Google Scholar] [CrossRef]
- Neeley, J.R.; Marengo, M.; Bono, G.; Braga, V.F.; Dall’Ora, M.; Magurno, D.; Marconi, M.; Trueba, N.; Tognelli, E.; Prada Moroni, P.G.; et al. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period-Luminosity-Metallicity Relations. Astrophys. J. 2017, 841, 84. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.O. Studies of Cepheid type variability. VIII. Period ratios of RR Lyrae stars. Astron. Astrophys. 1991, 243, 426. [Google Scholar]
- Coppola, G.; Marconi, M.; Stetson, P.B.; Bono, G.; Braga, V.F.; Ripepi, V.; Dall’Ora, M.; Musella, I.; Buonanno, R.; Fabrizio, M.; et al. The Carina Project IX: On Hydrogen and Helium Burning Variables. Astrophys. J. 2015, 814, 71. [Google Scholar] [CrossRef] [Green Version]
- Hajdu, G.; Dékány, I.; Catelan, M.; Grebel, E.K.; Jurcsik, J. A Data-driven Study of RR Lyrae Near-IR Light Curves: Principal Component Analysis, Robust Fits, and Metallicity Estimates. Astrophys. J. 2018, 857, 55. [Google Scholar] [CrossRef] [Green Version]
- Minniti, D.; Lucas, P.W.; Emerson, J.P.; Saito, R.K.; Hempel, M.; Pietrukowicz, P.; Ahumada, A.V.; Alonso, M.V.; Alonso-Garcia, J.; Arias, J.I.; et al. VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astron. 2010, 15, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, C.; Contreras Ramos, R.; Catelan, M.; Clement, C.M.; Gran, F.; Alonso-García, J.; Angeloni, R.; Hempel, M.; Dékány, I.; Minniti, D. Updated census of RR Lyrae stars in the globular cluster ω Centauri (NGC 5139). Astron. Astrophys. 2015, 577, A99. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.R.; Richards, J.W.; Butler, N.R.; Bloom, J.S. Mid-infrared Period-luminosity Relations of RR Lyrae Stars Derived from the WISE Preliminary Data Release. Astrophys. J. 2011, 738, 185. [Google Scholar] [CrossRef] [Green Version]
- Madore, B.F.; Hoffman, D.; Freedman, W.L.; Kollmeier, J.A.; Monson, A.; Persson, S.E.; Rich, J.A.; Scowcroft, V.; Seibert, M. A Preliminary Calibration of the RR Lyrae Period-Luminosity Relation at Mid-infrared Wavelengths: WISE Data. Astrophys. J. 2013, 776, 135. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.R.; Richards, J.W.; Butler, N.R.; Bloom, J.S. Mid-infrared period-luminosity relations of RR Lyrae stars derived from the AllWISE Data Release. Mon. Not. R. Astron. Soc. 2014, 440, L96–L100. [Google Scholar] [CrossRef] [Green Version]
- Dambis, A.K.; Rastorguev, A.S.; Zabolotskikh, M.V. Mid-infrared period-luminosity relations for globular cluster RR Lyrae. Mon. Not. R. Astron. Soc. 2014, 439, 3765–3774. [Google Scholar] [CrossRef]
- Muraveva, T.; Subramanian, S.; Clementini, G.; Cioni, M.R.L.; Palmer, M.; van Loon, J.T.; Moretti, M.I.; de Grijs, R.; Molinaro, R.; Ripepi, V. The VMC survey—XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars. Mon. Not. R. Astron. Soc. 2018, 473, 3131–3146. [Google Scholar] [CrossRef] [Green Version]
- Bono, G.; Gieren, W.P.; Marconi, M.; Fouqué, P.; Caputo, F. Improving the Mass Determination of Galactic Cepheids. Astrophys. J. 2001, 563, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Sollima, A.; Cacciari, C.; Valenti, E. The RR Lyrae period-K-luminosity relation for globular clusters: An observational approach. Mon. Not. R. Astron. Soc. 2006, 372, 1675–1680. [Google Scholar] [CrossRef]
- Lindegren, L.; Klioner, S.A.; Hernández, J.; Bombrun, A.; Ramos-Lerate, M.; Steidelmüller, H.; Bastian, U.; Biermann, M.; de Torres, A.; Gerlach, E.; et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 2021, 649, A2. [Google Scholar] [CrossRef]
- Del Principe, M.; Piersimoni, A.M.; Bono, G.; Di Paola, A.; Dolci, M.; Marconi, M. Near-Infrared Observations of RR Lyrae Variables in Galactic Globular Clusters. I. The Case of M92. Astrophys. J. 2005, 129, 2714–2724. [Google Scholar] [CrossRef] [Green Version]
- Madore, B.F. The period-luminosity relation. IV—Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. Astrophys. J. 1982, 253, 575–579. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kanbur, S.M.; Macri, L.M.; Singh, H.P.; Ngeow, C.C.; Wagner-Kaiser, R.; Sarajedini, A. Large Magellanic Cloud Near-infrared Synoptic Survey. II. The Wesenheit Relations and Their Application to the Distance Scale. Astrophys. J. 2016, 151, 88. [Google Scholar] [CrossRef] [Green Version]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the Early and the Late Universe. arXiv 2019, arXiv:1907.10625. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. Astrophys. J. Lett. 2021, 908, L6. [Google Scholar] [CrossRef]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astrophys. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.; Jang, I.S.; Beaton, R.; Lee, M.G.; Monson, A.; Neeley, J.; Rich, J. Calibration of the Tip of the Red Giant Branch. Astrophys. J. 2020, 891, 57. [Google Scholar] [CrossRef]
- Baade, W. Problems in the determination of the distance of galaxies. Astron. J. 1958, 63, 207–210. [Google Scholar] [CrossRef]
- Soszyński, I.; Udalski, A.; Szymański, M.K.; Wyrzykowski; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; et al. The OGLE Collection of Variable Stars. Type II Cepheids in the Magellanic System. Acta Astron. 2018, 68, 89–109. [Google Scholar] [CrossRef]
- Soszyński, I.; Udalski, A.; Szymański, M.K.; Skowron, D.; Pietrzyński, G.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Kozłowski, S.; et al. The OGLE Collection of Variable Stars. Classical Cepheids in the Magellanic System. Acta Astron. 2015, 65, 297–312. [Google Scholar]
- Matsunaga, N.; Fukushi, H.; Nakada, Y.; Tanabé, T.; Feast, M.W.; Menzies, J.W.; Ita, Y.; Nishiyama, S.; Baba, D.; Naoi, T.; et al. The period-luminosity relation for type II Cepheids in globular clusters. Mon. Not. R. Astron. Soc. 2006, 370, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Pritzl, B.J.; Smith, H.A.; Stetson, P.B.; Catelan, M.; Sweigart, A.V.; Layden, A.C.; Rich, R.M. Hubble Space Telescope Snapshot Study of Variable Stars in Globular Clusters: The Inner Region of NGC 6441. Astrophys. J. 2003, 126, 1381–1401. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, R. A photometric classification of pulsating variables with periods between one and three days. Astron. Astrophys. 1983, 124, 108–115. [Google Scholar]
- Sandage, A.; Diethelm, R.; Tammann, G.A. The P-L relation for RR Lyrae-like stars with 0.8d < P < 3d. Astron. Astrophys. 1994, 283, 111–120. [Google Scholar]
- Hertzsprung, E. On the relation between period and form of the light-curve of variable stars of the δ Cephei type. Bull. Astron. Institutes Neth. 1926, 3, 115. [Google Scholar]
- Bhardwaj, A.; Kanbur, S.M.; Marconi, M.; Rejkuba, M.; Singh, H.P.; Ngeow, C.C. A comparative study of multiwavelength theoretical and observed light curves of Cepheid variables. Mon. Not. R. Astron. Soc. 2017, 466, 2805–2824. [Google Scholar] [CrossRef] [Green Version]
- Soszynski, I.; Poleski, R.; Udalski, A.; Szymanski, M.K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Szewczyk, O.; Ulaczyk, K. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud. Acta Astron. 2008, 58, 163–185. [Google Scholar]
- Zsoldos, E. No RV Tauri Stars in Globular Clusters? Acta Astron. 1998, 48, 775–788. [Google Scholar]
- Smolec, R. Survey of non-linear hydrodynamic models of type-II Cepheids. Mon. Not. R. Astron. Soc. 2016, 456, 3475–3493. [Google Scholar] [CrossRef] [Green Version]
- Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V.F.; Fiorentino, G.; Stetson, P.B.; Buonanno, R.; Castellani, M.; Dall’Ora, M.; Fabrizio, M.; et al. On the pulsation and evolutionary properties of helium burning radially pulsating variables. Commun. Konkoly Obs. Hung. 2016, 105, 149–159. [Google Scholar]
- Harris, H.C. Population II Cepheids; Madore, B.F., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1985; pp. 232–245. [Google Scholar]
- McNamara, D.H. Period-Luminosity Relations of Population II Cepheids. Astrophys. J. 1995, 109, 2134. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.; Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Griest, K.; Lawson, W.A.; et al. The MACHO Project LMC Variable Star Inventory. VII. The Discovery of RV Tauri Stars and New Type II Cepheids in the Large Magellanic Cloud. Astrophys. J. 1998, 115, 1921–1933. [Google Scholar] [CrossRef] [Green Version]
- Majaess, D.; Turner, D.; Lane, D. Type II Cepheids as Extragalactic Distance Candles. Acta Astron. 2009, 59, 403–418. [Google Scholar]
- Ripepi, V.; Moretti, M.I.; Marconi, M.; Clementini, G.; Cioni, M.R.L.; de Grijs, R.; Emerson, J.P.; Groenewegen, M.A.T.; Ivanov, V.D.; Muraveva, T.; et al. S. The VMC Survey—XIII. Type II Cepheids in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 446, 3034–3061. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Macri, L.M.; Rejkuba, M.; Kanbur, S.M.; Ngeow, C.C.; Singh, H.P. Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables. Astrophys. J. 2017, 153, 154. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O.A.; Romaniello, M.; Kanbur, S.M.; Singh, H.P. Galactic bulge population II Cepheids in the VVV survey: Period-luminosity relations and a distance to the Galactic centre. Astron. Astrophys. 2017, 605, A100. [Google Scholar] [CrossRef] [Green Version]
- Braga, V.F.; Bhardwaj, A.; Contreras Ramos, R.; Minniti, D.; Bono, G.; de Grijs, R.; Minniti, J.H.; Rejkuba, M. Structure and kinematics of Type II Cepheids in the Galactic bulge based on near-infrared VVV data. Astron. Astrophys. 2018, 619, A51. [Google Scholar] [CrossRef]
- Di Criscienzo, M.; Caputo, F.; Marconi, M.; Cassisi, S. Synthetic properties of bright metal-poor variables. II. BL Hercules stars. Astron. Astrophys. 2007, 471, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Marconi, M.; Di Criscienzo, M. Updated pulsation models for BL Herculis stars. Astron. Astrophys. 2007, 467, 223–227. [Google Scholar] [CrossRef]
- Das, S.; Kanbur, S.M.; Smolec, R.; Bhardwaj, A.; Singh, H.P.; Rejkuba, M. A theoretical framework for BL Her stars—I. Effect of metallicity and convection parameters on period-luminosity and period-radius relations. Mon. Not. R. Astron. Soc. 2021, 501, 875–891. [Google Scholar] [CrossRef]
GC | [Fe/H] | D | Optical | NIR | ||||
---|---|---|---|---|---|---|---|---|
kpc | mag | mag | ||||||
M15 | 10.71 | 0.10 | — | [41] | 89 | [42] | 129 | |
M53 | 18.50 | 0.02 | — | [43] | 64 | [44] | 63 | |
M22 | 3.30 | — | 0.18 | [45] | 28 | [46] | 62 | |
Cen | 5.43 | 0.11 | — | [47] | 179 | [48] | 182 | |
M3 | 10.18 | 0.01 | — | [26,49] | 148 | [50] | 228 | |
M5 | 7.48 | 0.03 | — | [51] | 28 | [52] | 76 | |
M4 | 1.85 | 0.35 | — | [53] | 44 | [53] | 44 | |
N6569 | 10.53 | — | 0.25 | [45] | 21 | [46] | 11 | |
N6441 | 12.73 | — | 0.18 | [45] | 37 | [46] | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, A. RR Lyrae and Type II Cepheid Variables in Globular Clusters: Optical and Infrared Properties. Universe 2022, 8, 122. https://doi.org/10.3390/universe8020122
Bhardwaj A. RR Lyrae and Type II Cepheid Variables in Globular Clusters: Optical and Infrared Properties. Universe. 2022; 8(2):122. https://doi.org/10.3390/universe8020122
Chicago/Turabian StyleBhardwaj, Anupam. 2022. "RR Lyrae and Type II Cepheid Variables in Globular Clusters: Optical and Infrared Properties" Universe 8, no. 2: 122. https://doi.org/10.3390/universe8020122
APA StyleBhardwaj, A. (2022). RR Lyrae and Type II Cepheid Variables in Globular Clusters: Optical and Infrared Properties. Universe, 8(2), 122. https://doi.org/10.3390/universe8020122