Search for Muon-to-Electron Conversion with the COMET Experiment †
Abstract
:1. Introduction
1.1. Theoretical and Phenomenological Aspects
1.2. Experimental Aspects
2. Materials and Methods
2.1. Concept of the COMET Experiment
2.1.1. Highly-Intense Muon Source
2.1.2. Beam-Related Backgrounds and High-Quality Pulsed Beam
2.1.3. Intrinsic Physics Background
2.1.4. Cosmic-Ray Background
2.1.5. Staging Scenario
2.2. Accelerator, Beams and Facility
2.2.1. Accelerator and Proton Beam
2.2.2. Production Target and Superconducting Magnets
2.3. Experimental Apparatus
2.3.1. Straw-Tube Tracker and Electron Calorimeter
2.3.2. Cylindrical Detector System
2.3.3. Cosmic-Ray Veto Counters
2.3.4. Trigger and Data Acquisition
2.3.5. Radiation Tolerance
2.3.6. Offline Software
3. Results—Sensitivity and Backgrounds
4. Discussions
4.1. Further Improvements
4.2. Byproduct Experiments
4.3. Comparison with the Mu2e Experiment
- Their strategies to realize the beam extinction are different. COMET takes place at J-PARC, whereas Mu2e is performed at FNAL. As described in Section 2.2.1, COMET utilizes four of the existing nine buckets of the Main Ring to realize the required pulse timing structure. Therefore, in terms of the extinction, residual protons in the empty buckets should be mainly taken care of. On the other hand, Mu2e manipulates the beam bunch structure from two to four bunches during beam delivery. Therefore, straying protons in between bunches need to be eliminated with an additional extinction device, such as a dipole magnet with time-varying field (AC dipole) that sweeps out-of-time protons out of the beam.
- The shapes of the curved Transport Solenoids (TS) are different. Mu2e adopted a “S” shape TS with bend followed by bend to compensate the vertical drift in Equation (5). As described in Section 2.1.1, COMET adopted a “C” shape TS with bend, compensating the vertical drift by the dipole field embedded in TS. Since the magnitude of the vertical drift is proportional to the bending angle, we expect good separation of particle charge and momentum.
- The shapes of the Electron Spectrometer Solenoids are different. Mu2e adopted a conventional straight-shape solenoid which accommodates straw-tube trackers and electron calorimeters. The detectors have a hole in the central axis region to avoid hits from low-momentum particles. As shown in Figure 1b, COMET adopted another “C” shape curved solenoid with bend. Unwanted low-momentum particles can be eliminated by the vertical drift of the curved solenoid with a compensation dipole field before reaching the tracker.
- The primary beam intensities are different. COMET utilizes a proton beam with 56 kW and a data taking period of about one year; whereas Mu2e uses a 8-kW beam with about three years of data taking. Higher beam power shortens the data taking time although we need to handle more severe radiation environment and a higher particle rate. It should be noted that the data taking time does not take into account time sharing with other experiments in the same facility. COMET needs to share the J-PARC machine time with other neutrino or hadron experiments, while Mu2e can run in parallel with a neutrino experiment in FNAL.
- COMET adopted a two-staged approach as described in Section 2.1.5, while Mu2e plans on a single stage. Since the final goal is to improve the sensitivity by a factor 10,000 with respect to the current limit, COMET has chosen to climb step by step even if it costs time. The Phase-I results will improve the detailed design of Phase-II to mitigate the risks.
5. Prospects
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hincks, E.P.; Pontecorvo, B. Search for Gamma-Radiation in the 2.2-Microsecond Meson Decay Process. Phys. Rev. 1947, 73, 257. [Google Scholar] [CrossRef]
- Petkov, S.T. The processes μ→e + γ, μ→e + e + e¯, ν′→ν + γ in the Weinberg-Salam model with neutrino mixing. Yad. Fiz. 1977, 25, 641, [Sov. J. Nucl. Phys. 1977, 25, 340]; Erratum in Sov. J. Nucl. Phys. 1977, 25, 698. [Google Scholar]
- Marciano, W.J.; Sanda, A.I. Exotic decays of the muon and heavy leptons in gauge theories. Phys. Lett. B 1977, 67, 303. [Google Scholar] [CrossRef]
- Lee, B.W.; Pakvasa, S.; Shrock, R.E.; Sugawara, H. Muon and Electron Number Nonconservation in a V − A Gauge Model. Phys. Rev. Lett. 1977, 38, 937, Erratum in 1977, 38, 1230. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.W.; Shrock, R.E. Natural suppression of symmetry violation in gauge theories: Muon- and electron-lepton-number nonconservation. Phys. Rev. D 1977, 16, 1444. [Google Scholar] [CrossRef] [Green Version]
- Kuno, Y.; Okada, Y. Muon decay and physics beyond the standard model. Rev. Mod. Phys. 2001, 73, 151. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J.; Mori, T.; Roney, J.M. Charged Lepton Flavor Violation Experiments. Annu. Rev. Nucl. Part. Sci. 2008, 58, 315. [Google Scholar] [CrossRef]
- Mihara, S.; Miller, J.P.; Paradisi, P.; Piredda, G. Charged Lepton Flavor-Violation Experiments. Annu. Rev. Nucl. Part. Sci. 2013, 63, 531. [Google Scholar] [CrossRef]
- Bernstein, R.H.; Cooper, P.S. Charged lepton flavor violation: An experimenter’s guide. Phys. Rep. 2013, 532, 27. [Google Scholar] [CrossRef] [Green Version]
- De Gouvêa, A. (Charged) Lepton Flavor Violation. Nucl. Phys. B (Proc. Suppl.) 2009, 188, 303. [Google Scholar] [CrossRef]
- Crivellin, A.; Davidson, S.; Pruna, G.M.; Signer, A. Renormalisation-group improved analysis of μ→e processes in a systematic effective-field-theory approach. J. High Energy Phys. 2017, 5, 117. [Google Scholar] [CrossRef]
- Kitano, R.; Koike, M.; Okada, Y. Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei. Phys. Rev. D 2002, 66, 096002, Erratum in 2007, 76, 059902. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Kitano, R.; Okada, Y.; Tuzon, P. Model discriminating power of μ→e conversion in nuclei. Phys. Rev. D 2009, 80, 013002. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.; Kuno, Y.; Yamanaka, M. Selecting μ→e conversion targets to distinguish lepton flavour-changing operators. Phys. Lett. B 2019, 790, 380. [Google Scholar] [CrossRef]
- Davidson, S.; Kuno, Y.; Uesaka, Y.; Yamanaka, M. Probing μeγγ contact interactions with μ→e conversion. Phys. Rev. D 2020, 102, 115043. [Google Scholar] [CrossRef]
- Suzuki, T.; Measday, D.F.; Roalsvig, J.P. Total nuclear capture rates for negative muons. Phys. Rev. C 1987, 35, 2212. [Google Scholar] [CrossRef]
- Bertl, W.; Engfer, R.; Hermes, E.A.; Kurz, G.; Kozlowski, T.; Kuth, J.; Otter, G.; Rosenbaum, F.; Ryskulov, N.M.; van der Schaaf, A.; et al. A search for μ-e conversion in muonic gold. Eur. Phys. J. C 2006, 47, 337. [Google Scholar] [CrossRef]
- Kuno, Y. A search for muon-to-electron conversion at J-PARC: The COMET experiment. Prog. Theor. Exp. Phys. 2013, 2013, 022C01. [Google Scholar] [CrossRef] [Green Version]
- Abramishvili, R. et al. [COMET Collaboration] COMET Phase-I technical design report. Prog. Theor. Exp. Phys. 2020, 2020, 033C01. [Google Scholar] [CrossRef] [Green Version]
- Moritsu, M. The COMET Experiment: Search for Muon-to-Electron Conversion. In Proceedings of the 3rd J-PARC Symposium (J-PARC2019), Tsukuba, Japan, 23–27 September 2019; Volume 33, p. 011111. [Google Scholar]
- Dzhilkibaev, R.M.; Lobashev, V.M. On the search for the μ→e conversion process in a nucleus. Yad. Fiz. 1989, 49, 622, [Sov. J. Nucl. Phys. 1989, 49, 384]. [Google Scholar]
- Bachman, M. et al. [MECO Collaboration] A search for μ-N→e-N with sensitivity below 10-16 BNL Proposal E940 (1997). Available online: http://server.c-ad.bnl.gov/esfd/RSVP/p940_ags_proposal.pdf (accessed on 31 January 2022).
- Bartoszek, L. et al. [Mu2e Collaboration] Mu2e Technical Design Report. arXiv 2015, arXiv:1501.05241. [Google Scholar]
- Murat, P.A.; Pezzullo, G. Introduction to Charged Lepton Flavour Violation. Universe, unpublished.
- Cook, S.; D’Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; et al. Delivering the world’s most intense muon beam. Phys. Rev. Accel. Beams 2017, 20, 030101. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Garcia i Tormo, X.; Marciano, W.J. Muon decay in orbit: Spectrum of high-energy electrons. Phys. Rev. D 2011, 84, 013006. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, M.; Arakaki, Y.; Hashimoto, Y.; Kimura, T.; Murasugi, S.; Muto, R.; Okamura, K.; Yanaoka, E. 8 GeV slow extraction beam test for muon to electron conversion search experiment at J-PARC. In Proceedings of the 10th International Particle Accelerator Conference (IPAC2019), Melbourne, Australia, 19–24 May 2019; p. 2322. [Google Scholar]
- Nishiguchi, H.; Fukao, Y.; Igarashi, Y.; Mihara, S.; Moritsu, M.; Ueno, K.; Hashimoto, Y.; Muto, R.; Tomizawa, M.; Tamura, F.; et al. Extinction measurement of J-PARC MR with 8 GeV proton beam for the new muon-to-electron conversion search experiment—COMET. In Proceedings of the 10th International Particle Accelerator Conference (IPAC2019), Melbourne, Australia, 19–24 May 2019; p. 4372. [Google Scholar]
- Noguchi, K.; Tojo, J.; Fujii, Y.; Fukao, Y.; Hashimoto, Y.; Honda, R.; Igarashi, Y.; Mihara, S.; Muto, R.; Nishiguchi, H.; et al. 8 GeV Proton Beam Commissioning and Extinction Measurement for the COMET Experiment at J-PARC Main Ring. In Proceedings of the 11th International Particle Accelerator Conference (IPAC2021), Campinas, Brazil, 24–28 May 2021. [Google Scholar]
- Fujii, Y.; Nishiguchi, H.; Mihara, S.; Hashimoto, Y. Development of the proton beam monitor based on the thin diamond crystal for the COMET Experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 936, 669. [Google Scholar] [CrossRef]
- Yoshida, M.; Makida, Y.; Mihara, S.; Nakamoto, T.; Ogitsu, T.; Kuno, Y.; Lamm, M.; Kashikhin, V. Development of a Radiation Resistant Superconducting Solenoid Magnet for mu-e Conversion Experiments. IEEE Trans. Appl. Supercond. 2013, 23, 4101404. [Google Scholar] [CrossRef]
- Yoshida, M.; Yang, Y.; Ogitsu, T.; Fukao, Y.; Iio, M.; Makida, Y.; Mihara, S.; Nakamoto, T.; Okamura, T.; Sugano, M.; et al. Status of Superconducting Solenoid System for COMET Phase-I Experiment at J-PARC. IEEE Trans. Appl. Supercond. 2015, 25, 4500904. [Google Scholar] [CrossRef]
- Okamura, T.; Yoshida, M.; Oonaka, M.; Ohhata, H.; Ki, T.; Makida, Y.; Sasaki, K.-I.; Iida, M.; Tateno, A. Helium Transfer Line with Conduction-Cooled Nb-Ti Superconducting Wires for COMET Muon Transport Solenoid. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Hartford, CT, USA, 21–25 July 2019; Volume 755, p. 012058. [Google Scholar]
- Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; et al. Development of an extremely thin-wall straw tracker operational in vacuum—The COMET straw tracker system. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 845, 269–272. [Google Scholar] [CrossRef]
- Volkov, A.; Evtoukhovich, P.; Kravchenko, M.; Kuno, Y.; Mihara, S.; Nishiguchi, H.; Pavlov, A.; Tsamalaidze, Z. Properties of straw tubes for the tracking detector of the COMET experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 1004, 165242. [Google Scholar] [CrossRef]
- Oishi, K. Development of Electromagnetic Calorimeter Using LYSO Crystals for the COMET Experiment at J-PARC. In Proceedings of the EPS-HEP 2017, European Physical Society conference on High Energy Physics, Venice, Italy, 5–12 July 2017; Volume 314, p. 800. [Google Scholar]
- Ueno, K.; Hamada, E.; Hashimoto, S.; Ikeno, M.; Mihara, S.; Nishiguchi, H.; Uchida, T.; Yamaguchi, H. Design and performance evaluation of front-end electronics for COMET straw tracker. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 936, 297–299. [Google Scholar] [CrossRef]
- Hamada, E.; Fujii, Y.; Igarashi, Y.; Ikeno, M.; Mihara, S.; Nishiguchi, H.; Oishi, K.; Uchida, T.; Ueno, K.; Yamaguchi, H. Gigabit Ethernet Daisy-Chain on FPGA for COMET Read-out Electronics. IEEE Trans. Nucl. Sci. 2021, 68, 1968. [Google Scholar] [CrossRef]
- Wu, C.; Wong, T.S.; Kuno, Y.; Moritsu, M.; Nakazawa, Y.; Sato, A.; Sakamoto, H.; Tran, N.H.; Wong, M.L.; Yoshida, H.; et al. Test of a small prototype of the COMET cylindrical drift chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 1015, 165756. [Google Scholar] [CrossRef]
- Moritsu, M.; Kuno, Y.; Matsuda, Y.; Nakazawa, Y.; Okinaka, K.; Sakamoto, H.; Sato, A.; Wong, M.L.; Wong, T.S.; Wu, C.; et al. Construction and performance tests of the COMET CDC. In Proceedings of the 39th International Conference on High Energy Physics (ICHEP2018), Seoul, Korea, 4–11 July 2018; Volume 340, p. 538. [Google Scholar]
- Moritsu, M.; Kuno, Y.; Matsuda, Y.; Nakazawa, Y.; Okinaka, K.; Sakamoto, H.; Sato, A.; Wong, M.L.; Wong, T.S.; Wu, C.; et al. Commissioning of the Cylindrical Drift Chamber for the COMET experiment. In Proceedings of the European Physical Society Conference on High Energy Physics (EPS-HEP2019), Ghent, Belgium, 10–17 July 2019; Volume 364, p. 128. [Google Scholar]
- Nakazawa, Y.; Fujii, Y.; Ikeno, M.; Kuno, Y.; Lee, M.; Mihara, S.; Shoji, M.; Uchida, T.; Ueno, K.; Yoshida, H. An FPGA-based Trigger System with Online Track Recognition in COMET Phase-I. IEEE Trans. Nucl. Sci. 2021, 68, 2028–2034. [Google Scholar] [CrossRef]
- Ritt, S.; Amaudruz, P.A. New components of the MIDAS data acquisition system. In Proceedings of the 11th IEEE NPSS Real Time Conference Record, Sante Fe, NM, USA, 14–18 June 1999; pp. 116–118. [Google Scholar]
- Igarashi, Y.; Sendai, H. Data taking network for COMET Phase-I. IEEE Trans. Nucl. Sci. 2021, 68, 1884–1890. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Fujii, Y.; Hamada, E.; Lee, M.; Miyazaki, Y.; Sato, A.; Ueno, K.; Yoshida, H.; Zhang, J. Radiation study of FPGAs with neutron beam for COMET Phase-I. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 936, 351–352. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Fujii, Y.; Gillies, E.; Hamada, E.; Igarashi, Y.; Lee, M.; Moritsu, M.; Matsuda, Y.; Miyazaki, Y.; Nakai, Y.; et al. Radiation hardness study for the COMET Phase-I electronics. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 955, 163247. [Google Scholar] [CrossRef] [Green Version]
- Gillies, E. COMET Phase-I Track Reconstruction Using Machine Learning and Computer Vision. Ph.D. Thesis, Imperial College, London, UK, 2018. [Google Scholar]
- Zhang, Y.; Nakatsugawa, Y.; Li, H.B.; Yuan, Y.; Xing, T.Y. Multi-turn track fitting for the COMET experiment. In Proceedings of the 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018), Sofia, Bulgaria, 9–13 July 2018; Volume 214, p. 02005. [Google Scholar]
- Yeo, B.; Lee, M.J.; Kuno, Y. GPU-Accelerated Event Reconstruction for the COMET Phase-I Experiment. Comput. Phys. Commun. 2021, 258, 107606. [Google Scholar] [CrossRef]
- Krikler, B. Sensitivity and Background Estimates for Phase-II of the COMET Experiment. Ph.D. Thesis, Imperial College, London, UK, 2016. [Google Scholar]
- Angélique, J.-C.; Cárloganu, C.; da Silva, W.; Drutskoy, A.; Finger, M.; Grigoriev, D.N.; Kachelhoffer, T.; Kapusta, F.; Kuno, Y.; Lebrun, P.; et al. COMET-A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration. arXiv 2018, arXiv:1812.07824. [Google Scholar]
- Lee, M.J.; MacKenzie, M. Muon to positron conversion. Universe, unpublished.
- Yeo, B.; Kuno, Y.; Lee, M.J.; Zuber, K. Future experimental improvement for the search of lepton-number-violating processes in the eμ sector. Phys. Rev. D 2017, 96, 075027. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Kuno, Y.; Sato, J.; Yamanaka, M. New Process for Charged Lepton Flavor Violation Searches: μ− + e−→e− + e− in a Muonic Atom. Phys. Rev. Lett. 2010, 105, 121601. [Google Scholar] [CrossRef] [Green Version]
- Uesaka, Y.; Kuno, Y.; Sato, J.; Sato, T.; Yamanaka, M. Improved analyses for μ− + e−→e− + e− in muonic atoms by contact interactions. Phys. Rev. D 2016, 93, 076006. [Google Scholar] [CrossRef] [Green Version]
- Uesaka, Y.; Kuno, Y.; Sato, J.; Sato, T.; Yamanaka, M. Improved analysis for μ− + e−→e− + e− in muonic atoms by photonic interaction. Phys. Rev. D 2018, 97, 015017. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Kuno, Y.; Xing, T.Y. Possibility of Search for Bound μ−→e−a Decay. Letter of Interest Snowmass 2021. 2020, Volume 120. Available online: https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0_C_Wu-120.pdf (accessed on 31 January 2022).
- COMET Collaboration. Status of COMET Phase-α Study, submitted to J-PARC Program Advisory Committee. 2021; unpublished.
Phase-I | Phase-II | |
---|---|---|
Proton beam energy | 8 GeV | 8 GeV |
Proton beam power | 3.2 kW | 56 kW |
Total protons on target | ||
Total stopped muons | ||
Detector acceptance × efficiency | 0.041 | 0.057 |
DAQ time | 150 days | 260 days |
Single event sensitivity | ||
Estimated background events | 0.032 | 0.66 |
Type | Background | Estimated Events | |
---|---|---|---|
Phase-I | Phase-II | ||
Beam | Radiative pion capture | 0.0028 | 0.001 |
other prompt events | <0.0038 | 0.002 | |
delayed antiproton | 0.0012 | 0.296 | |
Physics | Muon decay in orbit | 0.01 | 0.068 |
Radiative muon capture | 0.0019 | ∼0 | |
Particle emission after muon capture | <0.001 | - | |
Others | Cosmic rays | ≲0.01 | 0.294 |
Total | 0.032 | 0.662 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moritsu, M., on behalf of the COMET Collaboration. Search for Muon-to-Electron Conversion with the COMET Experiment. Universe 2022, 8, 196. https://doi.org/10.3390/universe8040196
Moritsu M on behalf of the COMET Collaboration. Search for Muon-to-Electron Conversion with the COMET Experiment. Universe. 2022; 8(4):196. https://doi.org/10.3390/universe8040196
Chicago/Turabian StyleMoritsu, Manabu on behalf of the COMET Collaboration. 2022. "Search for Muon-to-Electron Conversion with the COMET Experiment" Universe 8, no. 4: 196. https://doi.org/10.3390/universe8040196
APA StyleMoritsu, M., on behalf of the COMET Collaboration. (2022). Search for Muon-to-Electron Conversion with the COMET Experiment. Universe, 8(4), 196. https://doi.org/10.3390/universe8040196